Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory
We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in...
Gespeichert in:
Veröffentlicht in: | Combinatorica (Budapest. 1981) 2018-02, Vol.38 (1), p.1-28 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Combinatorica (Budapest. 1981) |
container_volume | 38 |
creator | Araújo, João Bentz, Wolfram Dobson, Edward Konieczny, Janusz Morris, Joy |
description | We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups. |
doi_str_mv | 10.1007/s00493-016-3403-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014532156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014532156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZz2SPpWoVCj1Y8bikm02T0mTj7ubQf--WCJ48zcC8zzvwIHRP4JEA5E8BgCuWAZEZ45CWCzQjnKlMKkIv0QwoqEzJgl2jmxAOAFAwImZosxij65wfmjZ0eOXdOATsarxsvRmPZR_xc7v35dAE_NXGBi-G4diaMrauDzg6_GG7dE8U3jbW-dMtuqrLY7B3v3OOPl9ftsu3bL1ZvS8X68wwImNmjOUM6qoWtJCME1JVO2oKbpVRwgAVOyZqJQW1JREKmFBKybzKK1lwsEyxOXqYegfvvkcboj640ffppaZAuGCUCJlSZEoZ70LwttaDb7vSnzQBffamJ286edNnbxoSQycmpGy_t_6v-X_oB1E2b3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014532156</pqid></control><display><type>article</type><title>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</title><source>Springer Nature - Complete Springer Journals</source><creator>Araújo, João ; Bentz, Wolfram ; Dobson, Edward ; Konieczny, Janusz ; Morris, Joy</creator><creatorcontrib>Araújo, João ; Bentz, Wolfram ; Dobson, Edward ; Konieczny, Janusz ; Morris, Joy</creatorcontrib><description>We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-016-3403-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automorphisms ; Combinatorics ; Graph theory ; Mathematics ; Mathematics and Statistics ; Monoids ; Number theory ; Original Paper</subject><ispartof>Combinatorica (Budapest. 1981), 2018-02, Vol.38 (1), p.1-28</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</citedby><cites>FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-016-3403-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-016-3403-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Araújo, João</creatorcontrib><creatorcontrib>Bentz, Wolfram</creatorcontrib><creatorcontrib>Dobson, Edward</creatorcontrib><creatorcontrib>Konieczny, Janusz</creatorcontrib><creatorcontrib>Morris, Joy</creatorcontrib><title>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.</description><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Number theory</subject><subject>Original Paper</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZz2SPpWoVCj1Y8bikm02T0mTj7ubQf--WCJ48zcC8zzvwIHRP4JEA5E8BgCuWAZEZ45CWCzQjnKlMKkIv0QwoqEzJgl2jmxAOAFAwImZosxij65wfmjZ0eOXdOATsarxsvRmPZR_xc7v35dAE_NXGBi-G4diaMrauDzg6_GG7dE8U3jbW-dMtuqrLY7B3v3OOPl9ftsu3bL1ZvS8X68wwImNmjOUM6qoWtJCME1JVO2oKbpVRwgAVOyZqJQW1JREKmFBKybzKK1lwsEyxOXqYegfvvkcboj640ffppaZAuGCUCJlSZEoZ70LwttaDb7vSnzQBffamJ286edNnbxoSQycmpGy_t_6v-X_oB1E2b3o</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Araújo, João</creator><creator>Bentz, Wolfram</creator><creator>Dobson, Edward</creator><creator>Konieczny, Janusz</creator><creator>Morris, Joy</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</title><author>Araújo, João ; Bentz, Wolfram ; Dobson, Edward ; Konieczny, Janusz ; Morris, Joy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Number theory</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, João</creatorcontrib><creatorcontrib>Bentz, Wolfram</creatorcontrib><creatorcontrib>Dobson, Edward</creatorcontrib><creatorcontrib>Konieczny, Janusz</creatorcontrib><creatorcontrib>Morris, Joy</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, João</au><au>Bentz, Wolfram</au><au>Dobson, Edward</au><au>Konieczny, Janusz</au><au>Morris, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>38</volume><issue>1</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-016-3403-0</doi><tpages>28</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0209-9683 |
ispartof | Combinatorica (Budapest. 1981), 2018-02, Vol.38 (1), p.1-28 |
issn | 0209-9683 1439-6912 |
language | eng |
recordid | cdi_proquest_journals_2014532156 |
source | Springer Nature - Complete Springer Journals |
subjects | Automorphisms Combinatorics Graph theory Mathematics Mathematics and Statistics Monoids Number theory Original Paper |
title | Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automorphism%20Groups%20of%20Circulant%20Digraphs%20With%20Applications%20to%20Semigroup%20Theory&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Ara%C3%BAjo,%20Jo%C3%A3o&rft.date=2018-02-01&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-016-3403-0&rft_dat=%3Cproquest_cross%3E2014532156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014532156&rft_id=info:pmid/&rfr_iscdi=true |