Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory

We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Combinatorica (Budapest. 1981) 2018-02, Vol.38 (1), p.1-28
Hauptverfasser: Araújo, João, Bentz, Wolfram, Dobson, Edward, Konieczny, Janusz, Morris, Joy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 1
container_title Combinatorica (Budapest. 1981)
container_volume 38
creator Araújo, João
Bentz, Wolfram
Dobson, Edward
Konieczny, Janusz
Morris, Joy
description We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.
doi_str_mv 10.1007/s00493-016-3403-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014532156</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014532156</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZz2SPpWoVCj1Y8bikm02T0mTj7ubQf--WCJ48zcC8zzvwIHRP4JEA5E8BgCuWAZEZ45CWCzQjnKlMKkIv0QwoqEzJgl2jmxAOAFAwImZosxij65wfmjZ0eOXdOATsarxsvRmPZR_xc7v35dAE_NXGBi-G4diaMrauDzg6_GG7dE8U3jbW-dMtuqrLY7B3v3OOPl9ftsu3bL1ZvS8X68wwImNmjOUM6qoWtJCME1JVO2oKbpVRwgAVOyZqJQW1JREKmFBKybzKK1lwsEyxOXqYegfvvkcboj640ffppaZAuGCUCJlSZEoZ70LwttaDb7vSnzQBffamJ286edNnbxoSQycmpGy_t_6v-X_oB1E2b3o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014532156</pqid></control><display><type>article</type><title>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</title><source>Springer Nature - Complete Springer Journals</source><creator>Araújo, João ; Bentz, Wolfram ; Dobson, Edward ; Konieczny, Janusz ; Morris, Joy</creator><creatorcontrib>Araújo, João ; Bentz, Wolfram ; Dobson, Edward ; Konieczny, Janusz ; Morris, Joy</creatorcontrib><description>We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.</description><identifier>ISSN: 0209-9683</identifier><identifier>EISSN: 1439-6912</identifier><identifier>DOI: 10.1007/s00493-016-3403-0</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Automorphisms ; Combinatorics ; Graph theory ; Mathematics ; Mathematics and Statistics ; Monoids ; Number theory ; Original Paper</subject><ispartof>Combinatorica (Budapest. 1981), 2018-02, Vol.38 (1), p.1-28</ispartof><rights>János Bolyai Mathematical Society and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</citedby><cites>FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00493-016-3403-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00493-016-3403-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Araújo, João</creatorcontrib><creatorcontrib>Bentz, Wolfram</creatorcontrib><creatorcontrib>Dobson, Edward</creatorcontrib><creatorcontrib>Konieczny, Janusz</creatorcontrib><creatorcontrib>Morris, Joy</creatorcontrib><title>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</title><title>Combinatorica (Budapest. 1981)</title><addtitle>Combinatorica</addtitle><description>We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.</description><subject>Automorphisms</subject><subject>Combinatorics</subject><subject>Graph theory</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Monoids</subject><subject>Number theory</subject><subject>Original Paper</subject><issn>0209-9683</issn><issn>1439-6912</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLcFz9HZz2SPpWoVCj1Y8bikm02T0mTj7ubQf--WCJ48zcC8zzvwIHRP4JEA5E8BgCuWAZEZ45CWCzQjnKlMKkIv0QwoqEzJgl2jmxAOAFAwImZosxij65wfmjZ0eOXdOATsarxsvRmPZR_xc7v35dAE_NXGBi-G4diaMrauDzg6_GG7dE8U3jbW-dMtuqrLY7B3v3OOPl9ftsu3bL1ZvS8X68wwImNmjOUM6qoWtJCME1JVO2oKbpVRwgAVOyZqJQW1JREKmFBKybzKK1lwsEyxOXqYegfvvkcboj640ffppaZAuGCUCJlSZEoZ70LwttaDb7vSnzQBffamJ286edNnbxoSQycmpGy_t_6v-X_oB1E2b3o</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Araújo, João</creator><creator>Bentz, Wolfram</creator><creator>Dobson, Edward</creator><creator>Konieczny, Janusz</creator><creator>Morris, Joy</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</title><author>Araújo, João ; Bentz, Wolfram ; Dobson, Edward ; Konieczny, Janusz ; Morris, Joy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-cce430fdf52863411ddb2c84e9c95c025b35f9652ea15903599967d7d6840e393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Automorphisms</topic><topic>Combinatorics</topic><topic>Graph theory</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Monoids</topic><topic>Number theory</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Araújo, João</creatorcontrib><creatorcontrib>Bentz, Wolfram</creatorcontrib><creatorcontrib>Dobson, Edward</creatorcontrib><creatorcontrib>Konieczny, Janusz</creatorcontrib><creatorcontrib>Morris, Joy</creatorcontrib><collection>CrossRef</collection><jtitle>Combinatorica (Budapest. 1981)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Araújo, João</au><au>Bentz, Wolfram</au><au>Dobson, Edward</au><au>Konieczny, Janusz</au><au>Morris, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory</atitle><jtitle>Combinatorica (Budapest. 1981)</jtitle><stitle>Combinatorica</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>38</volume><issue>1</issue><spage>1</spage><epage>28</epage><pages>1-28</pages><issn>0209-9683</issn><eissn>1439-6912</eissn><abstract>We characterize the automorphism groups of circulant digraphs whose connection sets are relatively small, and of unit circulant digraphs. For each class, we either explicitly determine the automorphism group or we show that the graph is a “normal” circulant, so the automorphism group is contained in the normalizer of a cycle. Then we use these characterizations to prove results on the automorphisms of the endomorphism monoids of those digraphs. The paper ends with a list of open problems on graphs, number theory, groups and semigroups.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00493-016-3403-0</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0209-9683
ispartof Combinatorica (Budapest. 1981), 2018-02, Vol.38 (1), p.1-28
issn 0209-9683
1439-6912
language eng
recordid cdi_proquest_journals_2014532156
source Springer Nature - Complete Springer Journals
subjects Automorphisms
Combinatorics
Graph theory
Mathematics
Mathematics and Statistics
Monoids
Number theory
Original Paper
title Automorphism Groups of Circulant Digraphs With Applications to Semigroup Theory
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T03%3A03%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automorphism%20Groups%20of%20Circulant%20Digraphs%20With%20Applications%20to%20Semigroup%20Theory&rft.jtitle=Combinatorica%20(Budapest.%201981)&rft.au=Ara%C3%BAjo,%20Jo%C3%A3o&rft.date=2018-02-01&rft.volume=38&rft.issue=1&rft.spage=1&rft.epage=28&rft.pages=1-28&rft.issn=0209-9683&rft.eissn=1439-6912&rft_id=info:doi/10.1007/s00493-016-3403-0&rft_dat=%3Cproquest_cross%3E2014532156%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014532156&rft_id=info:pmid/&rfr_iscdi=true