Dynamic Modelling of the DEP Controlled Boiling in a Microchannel
The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. I...
Gespeichert in:
Veröffentlicht in: | Journal of thermal science 2018-04, Vol.27 (2), p.167-174 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 2 |
container_start_page | 167 |
container_title | Journal of thermal science |
container_volume | 27 |
creator | Lackowski, Marcin Kwidzinski, Roman |
description | The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities. |
doi_str_mv | 10.1007/s11630-018-0997-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014492660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014492660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f72ba213b96f312e37ab151f216692732d0e755e2f22c3dd2b4837e93e7bb2943</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLeA5-hksk2aY-2HCi16UPAW9iPbbtkmNdke-t-buoInTzMw7715_Ai55XDPAdRD5FwKYMDHDLRWDM7IgGstGAjxeZ52AMGQS31JrmLcAkglRTYgk9nR5bumpCtf2bZt3Jr6mnYbS2fzNzr1rgu-bW1FH33zc20czemqKYMvN7lztr0mF3XeRnvzO4fkYzF_nz6z5evTy3SyZCXKccdqhUWOXBRa1oKjFSov-IjXqZPUqARWYNVoZLFGLEVVYZGNhbJaWFUUqDMxJHd97j74r4ONndn6Q3DppUHgWaZRSkgq3qtSwRiDrc0-NLs8HA0HcyJlelImkTInUubkwd4Tk9atbfhL_t_0DbPgaSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014492660</pqid></control><display><type>article</type><title>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lackowski, Marcin ; Kwidzinski, Roman</creator><creatorcontrib>Lackowski, Marcin ; Kwidzinski, Roman</creatorcontrib><description>The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.</description><identifier>ISSN: 1003-2169</identifier><identifier>EISSN: 1993-033X</identifier><identifier>DOI: 10.1007/s11630-018-0997-0</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Classical and Continuum Physics ; Dielectrophoresis ; Dynamic models ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow velocity ; Heat and Mass Transfer ; Heat flux ; Physics ; Physics and Astronomy ; Pressure drop</subject><ispartof>Journal of thermal science, 2018-04, Vol.27 (2), p.167-174</ispartof><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f72ba213b96f312e37ab151f216692732d0e755e2f22c3dd2b4837e93e7bb2943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11630-018-0997-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11630-018-0997-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lackowski, Marcin</creatorcontrib><creatorcontrib>Kwidzinski, Roman</creatorcontrib><title>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</title><title>Journal of thermal science</title><addtitle>J. Therm. Sci</addtitle><description>The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.</description><subject>Classical and Continuum Physics</subject><subject>Dielectrophoresis</subject><subject>Dynamic models</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow velocity</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure drop</subject><issn>1003-2169</issn><issn>1993-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLeA5-hksk2aY-2HCi16UPAW9iPbbtkmNdke-t-buoInTzMw7715_Ai55XDPAdRD5FwKYMDHDLRWDM7IgGstGAjxeZ52AMGQS31JrmLcAkglRTYgk9nR5bumpCtf2bZt3Jr6mnYbS2fzNzr1rgu-bW1FH33zc20czemqKYMvN7lztr0mF3XeRnvzO4fkYzF_nz6z5evTy3SyZCXKccdqhUWOXBRa1oKjFSov-IjXqZPUqARWYNVoZLFGLEVVYZGNhbJaWFUUqDMxJHd97j74r4ONndn6Q3DppUHgWaZRSkgq3qtSwRiDrc0-NLs8HA0HcyJlelImkTInUubkwd4Tk9atbfhL_t_0DbPgaSY</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Lackowski, Marcin</creator><creator>Kwidzinski, Roman</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</title><author>Lackowski, Marcin ; Kwidzinski, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f72ba213b96f312e37ab151f216692732d0e755e2f22c3dd2b4837e93e7bb2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Continuum Physics</topic><topic>Dielectrophoresis</topic><topic>Dynamic models</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow velocity</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lackowski, Marcin</creatorcontrib><creatorcontrib>Kwidzinski, Roman</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lackowski, Marcin</au><au>Kwidzinski, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</atitle><jtitle>Journal of thermal science</jtitle><stitle>J. Therm. Sci</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>167</spage><epage>174</epage><pages>167-174</pages><issn>1003-2169</issn><eissn>1993-033X</eissn><abstract>The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11630-018-0997-0</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1003-2169 |
ispartof | Journal of thermal science, 2018-04, Vol.27 (2), p.167-174 |
issn | 1003-2169 1993-033X |
language | eng |
recordid | cdi_proquest_journals_2014492660 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Classical and Continuum Physics Dielectrophoresis Dynamic models Engineering Fluid Dynamics Engineering Thermodynamics Flow velocity Heat and Mass Transfer Heat flux Physics Physics and Astronomy Pressure drop |
title | Dynamic Modelling of the DEP Controlled Boiling in a Microchannel |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Modelling%20of%20the%20DEP%20Controlled%20Boiling%20in%20a%20Microchannel&rft.jtitle=Journal%20of%20thermal%20science&rft.au=Lackowski,%20Marcin&rft.date=2018-04-01&rft.volume=27&rft.issue=2&rft.spage=167&rft.epage=174&rft.pages=167-174&rft.issn=1003-2169&rft.eissn=1993-033X&rft_id=info:doi/10.1007/s11630-018-0997-0&rft_dat=%3Cproquest_cross%3E2014492660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014492660&rft_id=info:pmid/&rfr_iscdi=true |