Dynamic Modelling of the DEP Controlled Boiling in a Microchannel

The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. I...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal science 2018-04, Vol.27 (2), p.167-174
Hauptverfasser: Lackowski, Marcin, Kwidzinski, Roman
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 2
container_start_page 167
container_title Journal of thermal science
container_volume 27
creator Lackowski, Marcin
Kwidzinski, Roman
description The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.
doi_str_mv 10.1007/s11630-018-0997-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014492660</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014492660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f72ba213b96f312e37ab151f216692732d0e755e2f22c3dd2b4837e93e7bb2943</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWKt_gLeA5-hksk2aY-2HCi16UPAW9iPbbtkmNdke-t-buoInTzMw7715_Ai55XDPAdRD5FwKYMDHDLRWDM7IgGstGAjxeZ52AMGQS31JrmLcAkglRTYgk9nR5bumpCtf2bZt3Jr6mnYbS2fzNzr1rgu-bW1FH33zc20czemqKYMvN7lztr0mF3XeRnvzO4fkYzF_nz6z5evTy3SyZCXKccdqhUWOXBRa1oKjFSov-IjXqZPUqARWYNVoZLFGLEVVYZGNhbJaWFUUqDMxJHd97j74r4ONndn6Q3DppUHgWaZRSkgq3qtSwRiDrc0-NLs8HA0HcyJlelImkTInUubkwd4Tk9atbfhL_t_0DbPgaSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014492660</pqid></control><display><type>article</type><title>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Lackowski, Marcin ; Kwidzinski, Roman</creator><creatorcontrib>Lackowski, Marcin ; Kwidzinski, Roman</creatorcontrib><description>The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.</description><identifier>ISSN: 1003-2169</identifier><identifier>EISSN: 1993-033X</identifier><identifier>DOI: 10.1007/s11630-018-0997-0</identifier><language>eng</language><publisher>Heidelberg: Science Press</publisher><subject>Classical and Continuum Physics ; Dielectrophoresis ; Dynamic models ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Flow velocity ; Heat and Mass Transfer ; Heat flux ; Physics ; Physics and Astronomy ; Pressure drop</subject><ispartof>Journal of thermal science, 2018-04, Vol.27 (2), p.167-174</ispartof><rights>Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f72ba213b96f312e37ab151f216692732d0e755e2f22c3dd2b4837e93e7bb2943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11630-018-0997-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11630-018-0997-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lackowski, Marcin</creatorcontrib><creatorcontrib>Kwidzinski, Roman</creatorcontrib><title>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</title><title>Journal of thermal science</title><addtitle>J. Therm. Sci</addtitle><description>The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.</description><subject>Classical and Continuum Physics</subject><subject>Dielectrophoresis</subject><subject>Dynamic models</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Flow velocity</subject><subject>Heat and Mass Transfer</subject><subject>Heat flux</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pressure drop</subject><issn>1003-2169</issn><issn>1993-033X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWKt_gLeA5-hksk2aY-2HCi16UPAW9iPbbtkmNdke-t-buoInTzMw7715_Ai55XDPAdRD5FwKYMDHDLRWDM7IgGstGAjxeZ52AMGQS31JrmLcAkglRTYgk9nR5bumpCtf2bZt3Jr6mnYbS2fzNzr1rgu-bW1FH33zc20czemqKYMvN7lztr0mF3XeRnvzO4fkYzF_nz6z5evTy3SyZCXKccdqhUWOXBRa1oKjFSov-IjXqZPUqARWYNVoZLFGLEVVYZGNhbJaWFUUqDMxJHd97j74r4ONndn6Q3DppUHgWaZRSkgq3qtSwRiDrc0-NLs8HA0HcyJlelImkTInUubkwd4Tk9atbfhL_t_0DbPgaSY</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Lackowski, Marcin</creator><creator>Kwidzinski, Roman</creator><general>Science Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</title><author>Lackowski, Marcin ; Kwidzinski, Roman</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f72ba213b96f312e37ab151f216692732d0e755e2f22c3dd2b4837e93e7bb2943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Classical and Continuum Physics</topic><topic>Dielectrophoresis</topic><topic>Dynamic models</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Flow velocity</topic><topic>Heat and Mass Transfer</topic><topic>Heat flux</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pressure drop</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lackowski, Marcin</creatorcontrib><creatorcontrib>Kwidzinski, Roman</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lackowski, Marcin</au><au>Kwidzinski, Roman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dynamic Modelling of the DEP Controlled Boiling in a Microchannel</atitle><jtitle>Journal of thermal science</jtitle><stitle>J. Therm. Sci</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>167</spage><epage>174</epage><pages>167-174</pages><issn>1003-2169</issn><eissn>1993-033X</eissn><abstract>The paper presents theoretical analysis of flow dynamics in a heated microchannel in which flow rate may be controlled by dielectrophoretic (DEP) forces. Proposed model equations were derived in terms of lumped parameters characterising the system comprising of DEP controller and the microchannel. In result, an equation for liquid height of rise in the controller was obtained from momentum balances in the two elements of the considered system. In the model, the boiling process in the heated section of microchannel is taken into account through a pressure drop, which is a function of flow rate and uniform heat flux. Presented calculation results show that the DEP forces influence mainly the flow rate in the microchannel. In this way, by proper modulation of voltage applied to the DEP controller, it is possible to lower the frequency of Ledinegg instabilities.</abstract><cop>Heidelberg</cop><pub>Science Press</pub><doi>10.1007/s11630-018-0997-0</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1003-2169
ispartof Journal of thermal science, 2018-04, Vol.27 (2), p.167-174
issn 1003-2169
1993-033X
language eng
recordid cdi_proquest_journals_2014492660
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Classical and Continuum Physics
Dielectrophoresis
Dynamic models
Engineering Fluid Dynamics
Engineering Thermodynamics
Flow velocity
Heat and Mass Transfer
Heat flux
Physics
Physics and Astronomy
Pressure drop
title Dynamic Modelling of the DEP Controlled Boiling in a Microchannel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dynamic%20Modelling%20of%20the%20DEP%20Controlled%20Boiling%20in%20a%20Microchannel&rft.jtitle=Journal%20of%20thermal%20science&rft.au=Lackowski,%20Marcin&rft.date=2018-04-01&rft.volume=27&rft.issue=2&rft.spage=167&rft.epage=174&rft.pages=167-174&rft.issn=1003-2169&rft.eissn=1993-033X&rft_id=info:doi/10.1007/s11630-018-0997-0&rft_dat=%3Cproquest_cross%3E2014492660%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014492660&rft_id=info:pmid/&rfr_iscdi=true