C's: Sensing the Quality of Traffic Markings Using Camera-Attached Cars

Road maintenance requires local city governments to dedicate a substantial amount of funds in finding and repairing damaged traffic marks and pavements. In developed cities, the total road length is so large that the cost becomes unreasonably high. In this paper, we propose a method of sensing damag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SICE Journal of Control, Measurement, and System Integration Measurement, and System Integration, 2017, Vol.10(5), pp.393-401
Hauptverfasser: KAWASAKI, Takafumi, KAWANO, Makoto, IWAMOTO, Takeshi, MATSUMOTO, Michito, YONEZAWA, Takuro, NAKAZAWA, Jin, TOKUDA, Hideyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 401
container_issue 5
container_start_page 393
container_title SICE Journal of Control, Measurement, and System Integration
container_volume 10
creator KAWASAKI, Takafumi
KAWANO, Makoto
IWAMOTO, Takeshi
MATSUMOTO, Michito
YONEZAWA, Takuro
NAKAZAWA, Jin
TOKUDA, Hideyuki
description Road maintenance requires local city governments to dedicate a substantial amount of funds in finding and repairing damaged traffic marks and pavements. In developed cities, the total road length is so large that the cost becomes unreasonably high. In this paper, we propose a method of sensing damaged traffic marks from images captured by a camera mounted to a car, for the purpose of reducing road maintenance cost. In particular, we utilized convolutional neural networks (CNN), as well as linear support vector machines (SVM) and Random Forest, in developing a system of damage detection. The experiments used thousands of images captured in the wild and showed that the method can detect damages using CNN with 93% accuracy, at maximum, and at reasonable speed (55 images per second).
doi_str_mv 10.9746/jcmsi.10.393
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2014453134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0f6d166d1e1f41e38c5992937832dd4a</doaj_id><sourcerecordid>2014453134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2974-8b60191e2bee88023d102cee8c10bfdaccb3dc7dbdade4d79a180477e4e469c13</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRSMEEhV0xwdEYsGGFL-a2GxQVUGpVIQQ7dqa2JM2oU2KnS7697gPsrA84zlzfXWj6I6SgcpE-lSZjS8HoeOKX0Q9KqVIlMrI5bFmiZBSXUd978ucCJoOhWBZL5qMH_xz_I21L-tl3K4w_trBumz3cVPEcwdFUZr4A9xPGPt4caTGsEEHyahtwazQht752-iqgLXH_vm-iRZvr_PxezL7nEzHo1liWHCZyDwlVFFkOaKUhHFLCTOhNpTkhQVjcm5NZnMLFoXNFFBJRJahQJEqQ_lNND3p2gYqvXXlBtxeN1Dq40PjlhpcW5o1alKklqbhIC0ERS7NUCmmeCY5s1ZA0Lo_aW1d87tD3-qq2bk62NeMUCGGnHIRqMcTZVzjvcOi-5USfUheH5M_dCH5gL-c8Mq3sMQO_nfVwcPzRjcxK3Aaa_4HTvGMuw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014453134</pqid></control><display><type>article</type><title>C's: Sensing the Quality of Traffic Markings Using Camera-Attached Cars</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>KAWASAKI, Takafumi ; KAWANO, Makoto ; IWAMOTO, Takeshi ; MATSUMOTO, Michito ; YONEZAWA, Takuro ; NAKAZAWA, Jin ; TOKUDA, Hideyuki</creator><creatorcontrib>KAWASAKI, Takafumi ; KAWANO, Makoto ; IWAMOTO, Takeshi ; MATSUMOTO, Michito ; YONEZAWA, Takuro ; NAKAZAWA, Jin ; TOKUDA, Hideyuki</creatorcontrib><description>Road maintenance requires local city governments to dedicate a substantial amount of funds in finding and repairing damaged traffic marks and pavements. In developed cities, the total road length is so large that the cost becomes unreasonably high. In this paper, we propose a method of sensing damaged traffic marks from images captured by a camera mounted to a car, for the purpose of reducing road maintenance cost. In particular, we utilized convolutional neural networks (CNN), as well as linear support vector machines (SVM) and Random Forest, in developing a system of damage detection. The experiments used thousands of images captured in the wild and showed that the method can detect damages using CNN with 93% accuracy, at maximum, and at reasonable speed (55 images per second).</description><identifier>ISSN: 1882-4889</identifier><identifier>EISSN: 1884-9970</identifier><identifier>DOI: 10.9746/jcmsi.10.393</identifier><language>eng</language><publisher>Tokyo: The Society of Instrument and Control Engineers</publisher><subject>Artificial neural networks ; convolutional neural networks ; Damage detection ; deep learning ; Image detection ; image recognition ; inspection ; machine learning ; Maintenance costs ; Neural networks ; Road maintenance ; Road repairing ; Support vector machines</subject><ispartof>SICE Journal of Control, Measurement, and System Integration, 2017, Vol.10(5), pp.393-401</ispartof><rights>2017 The Society of Instrument and Control Engineers</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2974-8b60191e2bee88023d102cee8c10bfdaccb3dc7dbdade4d79a180477e4e469c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>KAWASAKI, Takafumi</creatorcontrib><creatorcontrib>KAWANO, Makoto</creatorcontrib><creatorcontrib>IWAMOTO, Takeshi</creatorcontrib><creatorcontrib>MATSUMOTO, Michito</creatorcontrib><creatorcontrib>YONEZAWA, Takuro</creatorcontrib><creatorcontrib>NAKAZAWA, Jin</creatorcontrib><creatorcontrib>TOKUDA, Hideyuki</creatorcontrib><title>C's: Sensing the Quality of Traffic Markings Using Camera-Attached Cars</title><title>SICE Journal of Control, Measurement, and System Integration</title><addtitle>SICE JCMSI</addtitle><description>Road maintenance requires local city governments to dedicate a substantial amount of funds in finding and repairing damaged traffic marks and pavements. In developed cities, the total road length is so large that the cost becomes unreasonably high. In this paper, we propose a method of sensing damaged traffic marks from images captured by a camera mounted to a car, for the purpose of reducing road maintenance cost. In particular, we utilized convolutional neural networks (CNN), as well as linear support vector machines (SVM) and Random Forest, in developing a system of damage detection. The experiments used thousands of images captured in the wild and showed that the method can detect damages using CNN with 93% accuracy, at maximum, and at reasonable speed (55 images per second).</description><subject>Artificial neural networks</subject><subject>convolutional neural networks</subject><subject>Damage detection</subject><subject>deep learning</subject><subject>Image detection</subject><subject>image recognition</subject><subject>inspection</subject><subject>machine learning</subject><subject>Maintenance costs</subject><subject>Neural networks</subject><subject>Road maintenance</subject><subject>Road repairing</subject><subject>Support vector machines</subject><issn>1882-4889</issn><issn>1884-9970</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNo9kMtOwzAQRSMEEhV0xwdEYsGGFL-a2GxQVUGpVIQQ7dqa2JM2oU2KnS7697gPsrA84zlzfXWj6I6SgcpE-lSZjS8HoeOKX0Q9KqVIlMrI5bFmiZBSXUd978ucCJoOhWBZL5qMH_xz_I21L-tl3K4w_trBumz3cVPEcwdFUZr4A9xPGPt4caTGsEEHyahtwazQht752-iqgLXH_vm-iRZvr_PxezL7nEzHo1liWHCZyDwlVFFkOaKUhHFLCTOhNpTkhQVjcm5NZnMLFoXNFFBJRJahQJEqQ_lNND3p2gYqvXXlBtxeN1Dq40PjlhpcW5o1alKklqbhIC0ERS7NUCmmeCY5s1ZA0Lo_aW1d87tD3-qq2bk62NeMUCGGnHIRqMcTZVzjvcOi-5USfUheH5M_dCH5gL-c8Mq3sMQO_nfVwcPzRjcxK3Aaa_4HTvGMuw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>KAWASAKI, Takafumi</creator><creator>KAWANO, Makoto</creator><creator>IWAMOTO, Takeshi</creator><creator>MATSUMOTO, Michito</creator><creator>YONEZAWA, Takuro</creator><creator>NAKAZAWA, Jin</creator><creator>TOKUDA, Hideyuki</creator><general>The Society of Instrument and Control Engineers</general><general>Japan Science and Technology Agency</general><general>Taylor &amp; Francis Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TA</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20170901</creationdate><title>C's: Sensing the Quality of Traffic Markings Using Camera-Attached Cars</title><author>KAWASAKI, Takafumi ; KAWANO, Makoto ; IWAMOTO, Takeshi ; MATSUMOTO, Michito ; YONEZAWA, Takuro ; NAKAZAWA, Jin ; TOKUDA, Hideyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2974-8b60191e2bee88023d102cee8c10bfdaccb3dc7dbdade4d79a180477e4e469c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>convolutional neural networks</topic><topic>Damage detection</topic><topic>deep learning</topic><topic>Image detection</topic><topic>image recognition</topic><topic>inspection</topic><topic>machine learning</topic><topic>Maintenance costs</topic><topic>Neural networks</topic><topic>Road maintenance</topic><topic>Road repairing</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>KAWASAKI, Takafumi</creatorcontrib><creatorcontrib>KAWANO, Makoto</creatorcontrib><creatorcontrib>IWAMOTO, Takeshi</creatorcontrib><creatorcontrib>MATSUMOTO, Michito</creatorcontrib><creatorcontrib>YONEZAWA, Takuro</creatorcontrib><creatorcontrib>NAKAZAWA, Jin</creatorcontrib><creatorcontrib>TOKUDA, Hideyuki</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>SICE Journal of Control, Measurement, and System Integration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KAWASAKI, Takafumi</au><au>KAWANO, Makoto</au><au>IWAMOTO, Takeshi</au><au>MATSUMOTO, Michito</au><au>YONEZAWA, Takuro</au><au>NAKAZAWA, Jin</au><au>TOKUDA, Hideyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>C's: Sensing the Quality of Traffic Markings Using Camera-Attached Cars</atitle><jtitle>SICE Journal of Control, Measurement, and System Integration</jtitle><addtitle>SICE JCMSI</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>10</volume><issue>5</issue><spage>393</spage><epage>401</epage><pages>393-401</pages><issn>1882-4889</issn><eissn>1884-9970</eissn><abstract>Road maintenance requires local city governments to dedicate a substantial amount of funds in finding and repairing damaged traffic marks and pavements. In developed cities, the total road length is so large that the cost becomes unreasonably high. In this paper, we propose a method of sensing damaged traffic marks from images captured by a camera mounted to a car, for the purpose of reducing road maintenance cost. In particular, we utilized convolutional neural networks (CNN), as well as linear support vector machines (SVM) and Random Forest, in developing a system of damage detection. The experiments used thousands of images captured in the wild and showed that the method can detect damages using CNN with 93% accuracy, at maximum, and at reasonable speed (55 images per second).</abstract><cop>Tokyo</cop><pub>The Society of Instrument and Control Engineers</pub><doi>10.9746/jcmsi.10.393</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1882-4889
ispartof SICE Journal of Control, Measurement, and System Integration, 2017, Vol.10(5), pp.393-401
issn 1882-4889
1884-9970
language eng
recordid cdi_proquest_journals_2014453134
source EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
convolutional neural networks
Damage detection
deep learning
Image detection
image recognition
inspection
machine learning
Maintenance costs
Neural networks
Road maintenance
Road repairing
Support vector machines
title C's: Sensing the Quality of Traffic Markings Using Camera-Attached Cars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T11%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=C's:%20Sensing%20the%20Quality%20of%20Traffic%20Markings%20Using%20Camera-Attached%20Cars&rft.jtitle=SICE%20Journal%20of%20Control,%20Measurement,%20and%20System%20Integration&rft.au=KAWASAKI,%20Takafumi&rft.date=2017-09-01&rft.volume=10&rft.issue=5&rft.spage=393&rft.epage=401&rft.pages=393-401&rft.issn=1882-4889&rft.eissn=1884-9970&rft_id=info:doi/10.9746/jcmsi.10.393&rft_dat=%3Cproquest_doaj_%3E2014453134%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014453134&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0f6d166d1e1f41e38c5992937832dd4a&rfr_iscdi=true