Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR

In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of >100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]²⁺ cluster...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (7), p.2092-2097
Hauptverfasser: Crack, Jason C, Green, Jeffrey, Cheesman, Myles R, Le Brun, Nick E, Thomson, Andrew J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2097
container_issue 7
container_start_page 2092
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Crack, Jason C
Green, Jeffrey
Cheesman, Myles R
Le Brun, Nick E
Thomson, Andrew J
description In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of >100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]²⁺ cluster, generating a transcriptionally active dimeric form. Upon exposure to oxygen the cluster converts to a [2Fe-2S]²⁺ form, leading to dissociation of the protein into monomers, which are incapable of binding DNA with high affinity. The mechanism of cluster conversion together with the nature of the products of conversion is of considerable current interest. Here, we demonstrate that [4Fe-4S]²⁺ to [2Fe-2S]²⁺ cluster conversion, in both native and reconstituted [4Fe-4S] FNR, proceeds via a one electron oxidation of the cluster, to give a [3Fe-4S]¹⁺ cluster intermediate, with the release of one Fe²⁺ ion and a superoxide ion. The cluster intermediate subsequently rearranges spontaneously to form the [2Fe-2S]²⁺ cluster, with the release of a Fe³⁺ ion and, as previously shown, two sulfide ions. Superoxide ion undergoes dismutation to hydrogen peroxide and oxygen. This mechanism, a one electron activation of the cluster, coupled to catalytic recycling of the resulting superoxide ion back to oxygen, provides a means of amplifying the sensitivity of [4Fe-4S] FNR to its signal molecule.
doi_str_mv 10.1073/pnas.0609514104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201438151</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426430</jstor_id><sourcerecordid>25426430</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-2948076bf7192072c9cabda6b342dda159726117e29cfb640cdb755ba8c6d5063</originalsourceid><addsrcrecordid>eNptkUFvEzEQhS0EoqFw5gRYHOC07djrtdcXJFQRQKpAIvRUIcvr9SaONuvF9kL6B_jdOCRqCuLkkeab53nzEHpK4IyAKM_HQccz4CArwgiwe2hGQJKCMwn30QyAiqJmlJ2gRzGuATJXw0N0QgTlgkM1Q78W02iD37rWFhvbOp1si_Vm7F3njE7OD9h3OK0s9tubpR0KN7STyUz86ZJZ4S74Db5mc1uwxTecPL6muaa5Nv0Ukw0Ru-HPfAp6iCa4cSeqexzscup18gHPP315jB50uo_2yeE9RVfzd18vPhSXn99_vHh7WRhOeCqoZDUI3nSCSAqCGml002relIy2rSaVzMYIEZZK0zWcgWkbUVWNrg1vK-DlKXqz1x2nJts1dshr9WoMbqPDjfLaqb87g1uppf-hSC2pJDILvDoIBP99sjGpjYvG9r0erJ-iIvnCJaFlBl_-A679FLLxqCgQVtakIhk630Mm-BiD7W43IaB2AatdwOoYcJ54ftfAkT8kmoHXB2A3eZRjSuSPJVXd1PfJbtMdqf-TGXi2B9Yxx3RL0IpRzkrI_Rf7fqe90svgorpaZHMlgGAiL1T-BrI-zZU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201438151</pqid></control><display><type>article</type><title>Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Crack, Jason C ; Green, Jeffrey ; Cheesman, Myles R ; Le Brun, Nick E ; Thomson, Andrew J</creator><creatorcontrib>Crack, Jason C ; Green, Jeffrey ; Cheesman, Myles R ; Le Brun, Nick E ; Thomson, Andrew J</creatorcontrib><description>In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of &gt;100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]²⁺ cluster, generating a transcriptionally active dimeric form. Upon exposure to oxygen the cluster converts to a [2Fe-2S]²⁺ form, leading to dissociation of the protein into monomers, which are incapable of binding DNA with high affinity. The mechanism of cluster conversion together with the nature of the products of conversion is of considerable current interest. Here, we demonstrate that [4Fe-4S]²⁺ to [2Fe-2S]²⁺ cluster conversion, in both native and reconstituted [4Fe-4S] FNR, proceeds via a one electron oxidation of the cluster, to give a [3Fe-4S]¹⁺ cluster intermediate, with the release of one Fe²⁺ ion and a superoxide ion. The cluster intermediate subsequently rearranges spontaneously to form the [2Fe-2S]²⁺ cluster, with the release of a Fe³⁺ ion and, as previously shown, two sulfide ions. Superoxide ion undergoes dismutation to hydrogen peroxide and oxygen. This mechanism, a one electron activation of the cluster, coupled to catalytic recycling of the resulting superoxide ion back to oxygen, provides a means of amplifying the sensitivity of [4Fe-4S] FNR to its signal molecule.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0609514104</identifier><identifier>PMID: 17267605</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Aerobiosis ; Biological Sciences ; Catalysis ; Cytochromes ; Dimerization ; Electrons ; Escherichia coli ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - metabolism ; Hydrogen ; Ions ; Iron - metabolism ; Iron-Sulfur Proteins - chemistry ; Iron-Sulfur Proteins - metabolism ; Kinetics ; Oxidation ; Oxidation-Reduction ; Oxygen ; Oxygen - metabolism ; Peroxides ; Phase Transition ; Physical Sciences ; Proteins ; Regulator genes ; Sulfides - metabolism ; Superoxides ; Superoxides - metabolism ; Transcription Factors - chemistry ; Transcription Factors - metabolism ; Transcriptional regulatory elements</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (7), p.2092-2097</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 13, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-2948076bf7192072c9cabda6b342dda159726117e29cfb640cdb755ba8c6d5063</citedby><cites>FETCH-LOGICAL-c616t-2948076bf7192072c9cabda6b342dda159726117e29cfb640cdb755ba8c6d5063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/7.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426430$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426430$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,315,729,782,786,805,887,27933,27934,53800,53802,58026,58259</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17267605$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crack, Jason C</creatorcontrib><creatorcontrib>Green, Jeffrey</creatorcontrib><creatorcontrib>Cheesman, Myles R</creatorcontrib><creatorcontrib>Le Brun, Nick E</creatorcontrib><creatorcontrib>Thomson, Andrew J</creatorcontrib><title>Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of &gt;100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]²⁺ cluster, generating a transcriptionally active dimeric form. Upon exposure to oxygen the cluster converts to a [2Fe-2S]²⁺ form, leading to dissociation of the protein into monomers, which are incapable of binding DNA with high affinity. The mechanism of cluster conversion together with the nature of the products of conversion is of considerable current interest. Here, we demonstrate that [4Fe-4S]²⁺ to [2Fe-2S]²⁺ cluster conversion, in both native and reconstituted [4Fe-4S] FNR, proceeds via a one electron oxidation of the cluster, to give a [3Fe-4S]¹⁺ cluster intermediate, with the release of one Fe²⁺ ion and a superoxide ion. The cluster intermediate subsequently rearranges spontaneously to form the [2Fe-2S]²⁺ cluster, with the release of a Fe³⁺ ion and, as previously shown, two sulfide ions. Superoxide ion undergoes dismutation to hydrogen peroxide and oxygen. This mechanism, a one electron activation of the cluster, coupled to catalytic recycling of the resulting superoxide ion back to oxygen, provides a means of amplifying the sensitivity of [4Fe-4S] FNR to its signal molecule.</description><subject>Aerobiosis</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Cytochromes</subject><subject>Dimerization</subject><subject>Electrons</subject><subject>Escherichia coli</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Hydrogen</subject><subject>Ions</subject><subject>Iron - metabolism</subject><subject>Iron-Sulfur Proteins - chemistry</subject><subject>Iron-Sulfur Proteins - metabolism</subject><subject>Kinetics</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Peroxides</subject><subject>Phase Transition</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Regulator genes</subject><subject>Sulfides - metabolism</subject><subject>Superoxides</subject><subject>Superoxides - metabolism</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - metabolism</subject><subject>Transcriptional regulatory elements</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkUFvEzEQhS0EoqFw5gRYHOC07djrtdcXJFQRQKpAIvRUIcvr9SaONuvF9kL6B_jdOCRqCuLkkeab53nzEHpK4IyAKM_HQccz4CArwgiwe2hGQJKCMwn30QyAiqJmlJ2gRzGuATJXw0N0QgTlgkM1Q78W02iD37rWFhvbOp1si_Vm7F3njE7OD9h3OK0s9tubpR0KN7STyUz86ZJZ4S74Db5mc1uwxTecPL6muaa5Nv0Ukw0Ru-HPfAp6iCa4cSeqexzscup18gHPP315jB50uo_2yeE9RVfzd18vPhSXn99_vHh7WRhOeCqoZDUI3nSCSAqCGml002relIy2rSaVzMYIEZZK0zWcgWkbUVWNrg1vK-DlKXqz1x2nJts1dshr9WoMbqPDjfLaqb87g1uppf-hSC2pJDILvDoIBP99sjGpjYvG9r0erJ-iIvnCJaFlBl_-A679FLLxqCgQVtakIhk630Mm-BiD7W43IaB2AatdwOoYcJ54ftfAkT8kmoHXB2A3eZRjSuSPJVXd1PfJbtMdqf-TGXi2B9Yxx3RL0IpRzkrI_Rf7fqe90svgorpaZHMlgGAiL1T-BrI-zZU</recordid><startdate>20070213</startdate><enddate>20070213</enddate><creator>Crack, Jason C</creator><creator>Green, Jeffrey</creator><creator>Cheesman, Myles R</creator><creator>Le Brun, Nick E</creator><creator>Thomson, Andrew J</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20070213</creationdate><title>Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR</title><author>Crack, Jason C ; Green, Jeffrey ; Cheesman, Myles R ; Le Brun, Nick E ; Thomson, Andrew J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-2948076bf7192072c9cabda6b342dda159726117e29cfb640cdb755ba8c6d5063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Aerobiosis</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Cytochromes</topic><topic>Dimerization</topic><topic>Electrons</topic><topic>Escherichia coli</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Hydrogen</topic><topic>Ions</topic><topic>Iron - metabolism</topic><topic>Iron-Sulfur Proteins - chemistry</topic><topic>Iron-Sulfur Proteins - metabolism</topic><topic>Kinetics</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Peroxides</topic><topic>Phase Transition</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Regulator genes</topic><topic>Sulfides - metabolism</topic><topic>Superoxides</topic><topic>Superoxides - metabolism</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - metabolism</topic><topic>Transcriptional regulatory elements</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crack, Jason C</creatorcontrib><creatorcontrib>Green, Jeffrey</creatorcontrib><creatorcontrib>Cheesman, Myles R</creatorcontrib><creatorcontrib>Le Brun, Nick E</creatorcontrib><creatorcontrib>Thomson, Andrew J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crack, Jason C</au><au>Green, Jeffrey</au><au>Cheesman, Myles R</au><au>Le Brun, Nick E</au><au>Thomson, Andrew J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-13</date><risdate>2007</risdate><volume>104</volume><issue>7</issue><spage>2092</spage><epage>2097</epage><pages>2092-2097</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of &gt;100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]²⁺ cluster, generating a transcriptionally active dimeric form. Upon exposure to oxygen the cluster converts to a [2Fe-2S]²⁺ form, leading to dissociation of the protein into monomers, which are incapable of binding DNA with high affinity. The mechanism of cluster conversion together with the nature of the products of conversion is of considerable current interest. Here, we demonstrate that [4Fe-4S]²⁺ to [2Fe-2S]²⁺ cluster conversion, in both native and reconstituted [4Fe-4S] FNR, proceeds via a one electron oxidation of the cluster, to give a [3Fe-4S]¹⁺ cluster intermediate, with the release of one Fe²⁺ ion and a superoxide ion. The cluster intermediate subsequently rearranges spontaneously to form the [2Fe-2S]²⁺ cluster, with the release of a Fe³⁺ ion and, as previously shown, two sulfide ions. Superoxide ion undergoes dismutation to hydrogen peroxide and oxygen. This mechanism, a one electron activation of the cluster, coupled to catalytic recycling of the resulting superoxide ion back to oxygen, provides a means of amplifying the sensitivity of [4Fe-4S] FNR to its signal molecule.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17267605</pmid><doi>10.1073/pnas.0609514104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (7), p.2092-2097
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201438151
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Aerobiosis
Biological Sciences
Catalysis
Cytochromes
Dimerization
Electrons
Escherichia coli
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - metabolism
Hydrogen
Ions
Iron - metabolism
Iron-Sulfur Proteins - chemistry
Iron-Sulfur Proteins - metabolism
Kinetics
Oxidation
Oxidation-Reduction
Oxygen
Oxygen - metabolism
Peroxides
Phase Transition
Physical Sciences
Proteins
Regulator genes
Sulfides - metabolism
Superoxides
Superoxides - metabolism
Transcription Factors - chemistry
Transcription Factors - metabolism
Transcriptional regulatory elements
title Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T17%3A32%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Superoxide-mediated%20amplification%20of%20the%20oxygen-induced%20switch%20from%20%5B4Fe-4S%5D%20to%20%5B2Fe-2S%5D%20clusters%20in%20the%20transcriptional%20regulator%20FNR&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Crack,%20Jason%20C&rft.date=2007-02-13&rft.volume=104&rft.issue=7&rft.spage=2092&rft.epage=2097&rft.pages=2092-2097&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0609514104&rft_dat=%3Cjstor_proqu%3E25426430%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201438151&rft_id=info:pmid/17267605&rft_jstor_id=25426430&rfr_iscdi=true