Singularly perturbed Neumann problem for fractional Schrödinger equations
This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrödinger equations with subcritical exponent. For some smooth bounded domain Ω ⊂ R n , our boundary condition is given by ∫ u ( x ) − u ( y ) | x − y | n + 2 s d y = 0 f o r x ∈ ℝ n ∖ Ω ¯ . We establ...
Gespeichert in:
Veröffentlicht in: | Science China. Mathematics 2018-04, Vol.61 (4), p.695-708 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 708 |
---|---|
container_issue | 4 |
container_start_page | 695 |
container_title | Science China. Mathematics |
container_volume | 61 |
creator | Chen, Guoyuan |
description | This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrödinger equations with subcritical exponent. For some smooth bounded domain Ω ⊂ R
n
, our boundary condition is given by
∫
u
(
x
)
−
u
(
y
)
|
x
−
y
|
n
+
2
s
d
y
=
0
f
o
r
x
∈
ℝ
n
∖
Ω
¯
. We establish existence of non-negative small energy solutions, and also investigate the integrability of the solutions on R
n
. |
doi_str_mv | 10.1007/s11425-016-0420-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2014351468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2014351468</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-631994deb9783ab37013fb9ae9acef41fa0c7a6140fd67048fca687d40368c9b3</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIVKUfwC0SZ8Ou7drxEVU8VcGhcLYcx4ZWadLayaE_xg_wY7gKEif2sLtazYxmh5BLhGsEUDcJUbA5BZQUBAPKTsgES6lpbuw071IJqljJz8kspQ3k4hqE4hPyvFq3H0NjY3Modj72Q6x8Xbz4YWvbttjFrmr8tghdLEK0rl93rW2KlfuM3191ZvpY-P1gj_d0Qc6CbZKf_c4peb-_e1s80uXrw9PidkkdR9lTyVFrUftKq5LbiitAHiptvbbOB4HBglNWooBQSwWiDM7KUtUCuCydrviUXI262d1-8Kk3m26I2VcyDFDwOQpZZhSOKBe7lKIPZhfXWxsPBsEcUzNjaianZo6pGZY5bOSkjD0-96f8P-kHgmVwXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014351468</pqid></control><display><type>article</type><title>Singularly perturbed Neumann problem for fractional Schrödinger equations</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Chen, Guoyuan</creator><creatorcontrib>Chen, Guoyuan</creatorcontrib><description>This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrödinger equations with subcritical exponent. For some smooth bounded domain Ω ⊂ R
n
, our boundary condition is given by
∫
u
(
x
)
−
u
(
y
)
|
x
−
y
|
n
+
2
s
d
y
=
0
f
o
r
x
∈
ℝ
n
∖
Ω
¯
. We establish existence of non-negative small energy solutions, and also investigate the integrability of the solutions on R
n
.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-016-0420-2</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Applications of Mathematics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Neumann problem ; Nonlinear equations ; Schrodinger equation</subject><ispartof>Science China. Mathematics, 2018-04, Vol.61 (4), p.695-708</ispartof><rights>Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-631994deb9783ab37013fb9ae9acef41fa0c7a6140fd67048fca687d40368c9b3</citedby><cites>FETCH-LOGICAL-c316t-631994deb9783ab37013fb9ae9acef41fa0c7a6140fd67048fca687d40368c9b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11425-016-0420-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11425-016-0420-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Chen, Guoyuan</creatorcontrib><title>Singularly perturbed Neumann problem for fractional Schrödinger equations</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><description>This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrödinger equations with subcritical exponent. For some smooth bounded domain Ω ⊂ R
n
, our boundary condition is given by
∫
u
(
x
)
−
u
(
y
)
|
x
−
y
|
n
+
2
s
d
y
=
0
f
o
r
x
∈
ℝ
n
∖
Ω
¯
. We establish existence of non-negative small energy solutions, and also investigate the integrability of the solutions on R
n
.</description><subject>Applications of Mathematics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Neumann problem</subject><subject>Nonlinear equations</subject><subject>Schrodinger equation</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UMtOwzAQtBBIVKUfwC0SZ8Ou7drxEVU8VcGhcLYcx4ZWadLayaE_xg_wY7gKEif2sLtazYxmh5BLhGsEUDcJUbA5BZQUBAPKTsgES6lpbuw071IJqljJz8kspQ3k4hqE4hPyvFq3H0NjY3Modj72Q6x8Xbz4YWvbttjFrmr8tghdLEK0rl93rW2KlfuM3191ZvpY-P1gj_d0Qc6CbZKf_c4peb-_e1s80uXrw9PidkkdR9lTyVFrUftKq5LbiitAHiptvbbOB4HBglNWooBQSwWiDM7KUtUCuCydrviUXI262d1-8Kk3m26I2VcyDFDwOQpZZhSOKBe7lKIPZhfXWxsPBsEcUzNjaianZo6pGZY5bOSkjD0-96f8P-kHgmVwXQ</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Chen, Guoyuan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Singularly perturbed Neumann problem for fractional Schrödinger equations</title><author>Chen, Guoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-631994deb9783ab37013fb9ae9acef41fa0c7a6140fd67048fca687d40368c9b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Neumann problem</topic><topic>Nonlinear equations</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Guoyuan</creatorcontrib><collection>CrossRef</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Guoyuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Singularly perturbed Neumann problem for fractional Schrödinger equations</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>61</volume><issue>4</issue><spage>695</spage><epage>708</epage><pages>695-708</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>This paper is concerned with a Neumann type problem for singularly perturbed fractional nonlinear Schrödinger equations with subcritical exponent. For some smooth bounded domain Ω ⊂ R
n
, our boundary condition is given by
∫
u
(
x
)
−
u
(
y
)
|
x
−
y
|
n
+
2
s
d
y
=
0
f
o
r
x
∈
ℝ
n
∖
Ω
¯
. We establish existence of non-negative small energy solutions, and also investigate the integrability of the solutions on R
n
.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-016-0420-2</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2018-04, Vol.61 (4), p.695-708 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_journals_2014351468 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Mathematical analysis Mathematics Mathematics and Statistics Neumann problem Nonlinear equations Schrodinger equation |
title | Singularly perturbed Neumann problem for fractional Schrödinger equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T10%3A46%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Singularly%20perturbed%20Neumann%20problem%20for%20fractional%20Schr%C3%B6dinger%20equations&rft.jtitle=Science%20China.%20Mathematics&rft.au=Chen,%20Guoyuan&rft.date=2018-04-01&rft.volume=61&rft.issue=4&rft.spage=695&rft.epage=708&rft.pages=695-708&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-016-0420-2&rft_dat=%3Cproquest_cross%3E2014351468%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014351468&rft_id=info:pmid/&rfr_iscdi=true |