Cortical pooling algorithms for judging global motion direction

Physiological studies suggest that decision networks read from the neural representation in the middle temporal area to determine the perceived direction of visual motion, whereas psychophysical studies tend to characterize motion perception in terms of the statistical properties of stimuli. To reco...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (9), p.3532-3537
Hauptverfasser: Webb, Ben S, Ledgeway, Timothy, McGraw, Paul V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3537
container_issue 9
container_start_page 3532
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Webb, Ben S
Ledgeway, Timothy
McGraw, Paul V
description Physiological studies suggest that decision networks read from the neural representation in the middle temporal area to determine the perceived direction of visual motion, whereas psychophysical studies tend to characterize motion perception in terms of the statistical properties of stimuli. To reconcile these different approaches, we examined whether estimating the central tendency of the physical direction of global motion was a better indicator of perceived direction than algorithms (e.g., maximum likelihood) that read from directionally tuned mechanisms near the end of the motion pathway. The task of human observers was to discriminate the global direction of random dot kinematograms composed of asymmetrical distributions of local directions with distinct measures of central tendency. None of the statistical measures of image direction central tendency provided consistently accurate predictions of perceived global motion direction. However, regardless of the local composition of motion directions, a maximum-likelihood decoder produced global motion estimates commensurate with the psychophysical data. Our results suggest that mechanism-based, read-out algorithms offer a more accurate and robust guide to human motion perception than any stimulus-based, statistical estimate of central tendency.
doi_str_mv 10.1073/pnas.0611288104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201423944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426684</jstor_id><sourcerecordid>25426684</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-d885302bd4329bd973a33ba85be56b19ce143e79455810ed3f30ec3c782c6cb33</originalsourceid><addsrcrecordid>eNqFkc2PFCEQxYnRuOPo2ZPa8aCn3gUKGrhoNhO_kk086J4JTdO9TJhmhG7j_vfSmcnOakw8QahfPerVQ-g5wecEC7jYjyaf44YQKiXB7AFaEaxI3TCFH6IVxlTUklF2hp7kvMUYKy7xY3RGBDS4EXKF3m9imrw1odrHGPw4VCYMMfnpZperPqZqO3fD8jyE2BZqFycfx6rzydnl9hQ96k3I7tnxXKPrjx--bz7XV18_fdlcXtWWs2aqOyk5YNp2DKhqOyXAALRG8tbxpiXKOsLACcU4Lz5cBz1gZ8EKSW1jW4A1enfQ3c_tznXWjVMyQe-T35l0q6Px-s_K6G_0EH9qIjFvivgavTkKpPhjdnnSO5-tC8GMLs5Zi7IrJSj9L0jKDiUIXsDXf4HbOKexbEFTTBgFxZZvLw6QTTHn5Pq7kQnWS4R6iVCfIiwdL-87PfHHzArw9ggsnSc5ppUGDlT3cwiT-zXdk_o3WYAXB2Cbp5juCMoZbRq5zPLqUO9N1GZIPuvrb8UcYCw4BQHwG-Hywg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201423944</pqid></control><display><type>article</type><title>Cortical pooling algorithms for judging global motion direction</title><source>PubMed Central Free</source><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Webb, Ben S ; Ledgeway, Timothy ; McGraw, Paul V</creator><creatorcontrib>Webb, Ben S ; Ledgeway, Timothy ; McGraw, Paul V</creatorcontrib><description>Physiological studies suggest that decision networks read from the neural representation in the middle temporal area to determine the perceived direction of visual motion, whereas psychophysical studies tend to characterize motion perception in terms of the statistical properties of stimuli. To reconcile these different approaches, we examined whether estimating the central tendency of the physical direction of global motion was a better indicator of perceived direction than algorithms (e.g., maximum likelihood) that read from directionally tuned mechanisms near the end of the motion pathway. The task of human observers was to discriminate the global direction of random dot kinematograms composed of asymmetrical distributions of local directions with distinct measures of central tendency. None of the statistical measures of image direction central tendency provided consistently accurate predictions of perceived global motion direction. However, regardless of the local composition of motion directions, a maximum-likelihood decoder produced global motion estimates commensurate with the psychophysical data. Our results suggest that mechanism-based, read-out algorithms offer a more accurate and robust guide to human motion perception than any stimulus-based, statistical estimate of central tendency.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0611288104</identifier><identifier>PMID: 17360678</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Algorithms ; Biological Sciences ; Central tendencies ; Computer Simulation ; Estimate reliability ; Experimentation ; Eye movements ; Eyes &amp; eyesight ; Humans ; Likelihood Functions ; Mathematical vectors ; Maximum likelihood estimation ; Models, Neurological ; Motion perception ; Motion Perception - physiology ; Neuroscience ; Photic Stimulation ; Population estimates ; Psychophysics ; Sensory perception ; Speed ; Studies ; Visual Cortex - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (9), p.3532-3537</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 27, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-d885302bd4329bd973a33ba85be56b19ce143e79455810ed3f30ec3c782c6cb33</citedby><cites>FETCH-LOGICAL-c546t-d885302bd4329bd973a33ba85be56b19ce143e79455810ed3f30ec3c782c6cb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/9.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426684$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426684$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17360678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Webb, Ben S</creatorcontrib><creatorcontrib>Ledgeway, Timothy</creatorcontrib><creatorcontrib>McGraw, Paul V</creatorcontrib><title>Cortical pooling algorithms for judging global motion direction</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Physiological studies suggest that decision networks read from the neural representation in the middle temporal area to determine the perceived direction of visual motion, whereas psychophysical studies tend to characterize motion perception in terms of the statistical properties of stimuli. To reconcile these different approaches, we examined whether estimating the central tendency of the physical direction of global motion was a better indicator of perceived direction than algorithms (e.g., maximum likelihood) that read from directionally tuned mechanisms near the end of the motion pathway. The task of human observers was to discriminate the global direction of random dot kinematograms composed of asymmetrical distributions of local directions with distinct measures of central tendency. None of the statistical measures of image direction central tendency provided consistently accurate predictions of perceived global motion direction. However, regardless of the local composition of motion directions, a maximum-likelihood decoder produced global motion estimates commensurate with the psychophysical data. Our results suggest that mechanism-based, read-out algorithms offer a more accurate and robust guide to human motion perception than any stimulus-based, statistical estimate of central tendency.</description><subject>Adult</subject><subject>Algorithms</subject><subject>Biological Sciences</subject><subject>Central tendencies</subject><subject>Computer Simulation</subject><subject>Estimate reliability</subject><subject>Experimentation</subject><subject>Eye movements</subject><subject>Eyes &amp; eyesight</subject><subject>Humans</subject><subject>Likelihood Functions</subject><subject>Mathematical vectors</subject><subject>Maximum likelihood estimation</subject><subject>Models, Neurological</subject><subject>Motion perception</subject><subject>Motion Perception - physiology</subject><subject>Neuroscience</subject><subject>Photic Stimulation</subject><subject>Population estimates</subject><subject>Psychophysics</subject><subject>Sensory perception</subject><subject>Speed</subject><subject>Studies</subject><subject>Visual Cortex - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2PFCEQxYnRuOPo2ZPa8aCn3gUKGrhoNhO_kk086J4JTdO9TJhmhG7j_vfSmcnOakw8QahfPerVQ-g5wecEC7jYjyaf44YQKiXB7AFaEaxI3TCFH6IVxlTUklF2hp7kvMUYKy7xY3RGBDS4EXKF3m9imrw1odrHGPw4VCYMMfnpZperPqZqO3fD8jyE2BZqFycfx6rzydnl9hQ96k3I7tnxXKPrjx--bz7XV18_fdlcXtWWs2aqOyk5YNp2DKhqOyXAALRG8tbxpiXKOsLACcU4Lz5cBz1gZ8EKSW1jW4A1enfQ3c_tznXWjVMyQe-T35l0q6Px-s_K6G_0EH9qIjFvivgavTkKpPhjdnnSO5-tC8GMLs5Zi7IrJSj9L0jKDiUIXsDXf4HbOKexbEFTTBgFxZZvLw6QTTHn5Pq7kQnWS4R6iVCfIiwdL-87PfHHzArw9ggsnSc5ppUGDlT3cwiT-zXdk_o3WYAXB2Cbp5juCMoZbRq5zPLqUO9N1GZIPuvrb8UcYCw4BQHwG-Hywg0</recordid><startdate>20070227</startdate><enddate>20070227</enddate><creator>Webb, Ben S</creator><creator>Ledgeway, Timothy</creator><creator>McGraw, Paul V</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070227</creationdate><title>Cortical pooling algorithms for judging global motion direction</title><author>Webb, Ben S ; Ledgeway, Timothy ; McGraw, Paul V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-d885302bd4329bd973a33ba85be56b19ce143e79455810ed3f30ec3c782c6cb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adult</topic><topic>Algorithms</topic><topic>Biological Sciences</topic><topic>Central tendencies</topic><topic>Computer Simulation</topic><topic>Estimate reliability</topic><topic>Experimentation</topic><topic>Eye movements</topic><topic>Eyes &amp; eyesight</topic><topic>Humans</topic><topic>Likelihood Functions</topic><topic>Mathematical vectors</topic><topic>Maximum likelihood estimation</topic><topic>Models, Neurological</topic><topic>Motion perception</topic><topic>Motion Perception - physiology</topic><topic>Neuroscience</topic><topic>Photic Stimulation</topic><topic>Population estimates</topic><topic>Psychophysics</topic><topic>Sensory perception</topic><topic>Speed</topic><topic>Studies</topic><topic>Visual Cortex - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Webb, Ben S</creatorcontrib><creatorcontrib>Ledgeway, Timothy</creatorcontrib><creatorcontrib>McGraw, Paul V</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Webb, Ben S</au><au>Ledgeway, Timothy</au><au>McGraw, Paul V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical pooling algorithms for judging global motion direction</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-27</date><risdate>2007</risdate><volume>104</volume><issue>9</issue><spage>3532</spage><epage>3537</epage><pages>3532-3537</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Physiological studies suggest that decision networks read from the neural representation in the middle temporal area to determine the perceived direction of visual motion, whereas psychophysical studies tend to characterize motion perception in terms of the statistical properties of stimuli. To reconcile these different approaches, we examined whether estimating the central tendency of the physical direction of global motion was a better indicator of perceived direction than algorithms (e.g., maximum likelihood) that read from directionally tuned mechanisms near the end of the motion pathway. The task of human observers was to discriminate the global direction of random dot kinematograms composed of asymmetrical distributions of local directions with distinct measures of central tendency. None of the statistical measures of image direction central tendency provided consistently accurate predictions of perceived global motion direction. However, regardless of the local composition of motion directions, a maximum-likelihood decoder produced global motion estimates commensurate with the psychophysical data. Our results suggest that mechanism-based, read-out algorithms offer a more accurate and robust guide to human motion perception than any stimulus-based, statistical estimate of central tendency.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17360678</pmid><doi>10.1073/pnas.0611288104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (9), p.3532-3537
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201423944
source PubMed Central Free; MEDLINE; Jstor Complete Legacy; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adult
Algorithms
Biological Sciences
Central tendencies
Computer Simulation
Estimate reliability
Experimentation
Eye movements
Eyes & eyesight
Humans
Likelihood Functions
Mathematical vectors
Maximum likelihood estimation
Models, Neurological
Motion perception
Motion Perception - physiology
Neuroscience
Photic Stimulation
Population estimates
Psychophysics
Sensory perception
Speed
Studies
Visual Cortex - physiology
title Cortical pooling algorithms for judging global motion direction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20pooling%20algorithms%20for%20judging%20global%20motion%20direction&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Webb,%20Ben%20S&rft.date=2007-02-27&rft.volume=104&rft.issue=9&rft.spage=3532&rft.epage=3537&rft.pages=3532-3537&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0611288104&rft_dat=%3Cjstor_proqu%3E25426684%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201423944&rft_id=info:pmid/17360678&rft_jstor_id=25426684&rfr_iscdi=true