The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses
The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (31), p.10913-10918 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10918 |
---|---|
container_issue | 31 |
container_start_page | 10913 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 102 |
creator | Methé, Barbara A. Nelson, Karen E. Deming, Jody W. Momen, Bahram Melamud, Eugene Zhang, Xijun Moult, John Madupu, Ramana Nelson, William C. Dodson, Robert J. Brinkac, Lauren M. Daugherty, Sean C. Durkin, Anthony S. DeBoy, Robert T. Kolonay, James F. Sullivan, Steven A. Zhou, Liwei Davidsen, Tanja M. Wu, Martin Huston, Adrienne L. Lewis, Matthew Weaver, Bruce Weidman, Janice F. Khouri, Hoda Utterback, Terry R. Feldblyum, Tamara V. Fraser, Claire M. |
description | The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition. |
doi_str_mv | 10.1073/pnas.0504766102 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201413804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376191</jstor_id><sourcerecordid>3376191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhS0EosvCmQtCFgckDmnHsRM7l0rVClqklaignC0nmTRZeePFTgr5A_xunO6qC1x6sqz53rNn5hHymsEpA8nPdr0Jp5CBkHnOIH1CFgwKluSigKdkAZDKRIlUnJAXIWwAoMgUPCcnLAfBJRQL8vumRXodpqr1btd2tqvoumswDJNFagL9indoLNa0nOgQ0Uvs3RbpN_wxYl8hdQ1dOfsTre0M3d37oJ-G1hs0lIurKPJuvG33wuhu-ppeezfg_e2iN3YKGF6SZ42xAV8dziX5_unjzeoqWX-5_Ly6WCdVJrMhURlnPMuarJQFMJHynDMFNa8VF0oZXptGiozldQmFwErIsqmFSk1VNU08GF-S873vbiy3WFfYD95YvfPd1vhJO9Ppfyt91-pbd6dZfCdjEA3eHwy8iyMIg952oYrtmx7dGHSuhEilfBxMIeUg8jSC7_4DN270cS4zwwTjKu5qSc72UOVdCB6bhy8z0HMS9JwEfUxCVLz9u9Mjf1h9BD4cgFl5tEs1Z3pOEdfNaO2Av4bI0kfYiLzZI5swOP_AcC5zFut_AKDi0mM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201413804</pqid></control><display><type>article</type><title>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Methé, Barbara A. ; Nelson, Karen E. ; Deming, Jody W. ; Momen, Bahram ; Melamud, Eugene ; Zhang, Xijun ; Moult, John ; Madupu, Ramana ; Nelson, William C. ; Dodson, Robert J. ; Brinkac, Lauren M. ; Daugherty, Sean C. ; Durkin, Anthony S. ; DeBoy, Robert T. ; Kolonay, James F. ; Sullivan, Steven A. ; Zhou, Liwei ; Davidsen, Tanja M. ; Wu, Martin ; Huston, Adrienne L. ; Lewis, Matthew ; Weaver, Bruce ; Weidman, Janice F. ; Khouri, Hoda ; Utterback, Terry R. ; Feldblyum, Tamara V. ; Fraser, Claire M.</creator><creatorcontrib>Methé, Barbara A. ; Nelson, Karen E. ; Deming, Jody W. ; Momen, Bahram ; Melamud, Eugene ; Zhang, Xijun ; Moult, John ; Madupu, Ramana ; Nelson, William C. ; Dodson, Robert J. ; Brinkac, Lauren M. ; Daugherty, Sean C. ; Durkin, Anthony S. ; DeBoy, Robert T. ; Kolonay, James F. ; Sullivan, Steven A. ; Zhou, Liwei ; Davidsen, Tanja M. ; Wu, Martin ; Huston, Adrienne L. ; Lewis, Matthew ; Weaver, Bruce ; Weidman, Janice F. ; Khouri, Hoda ; Utterback, Terry R. ; Feldblyum, Tamara V. ; Fraser, Claire M.</creatorcontrib><description>The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0504766102</identifier><identifier>PMID: 16043709</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Amino Acids - analysis ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biological Sciences ; Carbon - metabolism ; Chemical composition ; Cold ; Cold Climate ; Colwellia ; Colwellia psychrerythraea ; Comparative analysis ; Cumulative distribution functions ; Datasets ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Energy Metabolism ; Environmental science ; Enzymes ; Gammaproteobacteria - genetics ; Gammaproteobacteria - metabolism ; Genome, Bacterial ; Genomes ; Genomics ; Marine Biology ; Membrane Fluidity ; Mesophiles ; Models, Biological ; Molecular Sequence Data ; Nitrogen - metabolism ; Proteomics ; Psychrophiles ; Species Specificity ; Thermophilic microorganisms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (31), p.10913-10918</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 2, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</citedby><cites>FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376191$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376191$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16043709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Methé, Barbara A.</creatorcontrib><creatorcontrib>Nelson, Karen E.</creatorcontrib><creatorcontrib>Deming, Jody W.</creatorcontrib><creatorcontrib>Momen, Bahram</creatorcontrib><creatorcontrib>Melamud, Eugene</creatorcontrib><creatorcontrib>Zhang, Xijun</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Madupu, Ramana</creatorcontrib><creatorcontrib>Nelson, William C.</creatorcontrib><creatorcontrib>Dodson, Robert J.</creatorcontrib><creatorcontrib>Brinkac, Lauren M.</creatorcontrib><creatorcontrib>Daugherty, Sean C.</creatorcontrib><creatorcontrib>Durkin, Anthony S.</creatorcontrib><creatorcontrib>DeBoy, Robert T.</creatorcontrib><creatorcontrib>Kolonay, James F.</creatorcontrib><creatorcontrib>Sullivan, Steven A.</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Davidsen, Tanja M.</creatorcontrib><creatorcontrib>Wu, Martin</creatorcontrib><creatorcontrib>Huston, Adrienne L.</creatorcontrib><creatorcontrib>Lewis, Matthew</creatorcontrib><creatorcontrib>Weaver, Bruce</creatorcontrib><creatorcontrib>Weidman, Janice F.</creatorcontrib><creatorcontrib>Khouri, Hoda</creatorcontrib><creatorcontrib>Utterback, Terry R.</creatorcontrib><creatorcontrib>Feldblyum, Tamara V.</creatorcontrib><creatorcontrib>Fraser, Claire M.</creatorcontrib><title>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.</description><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Sciences</subject><subject>Carbon - metabolism</subject><subject>Chemical composition</subject><subject>Cold</subject><subject>Cold Climate</subject><subject>Colwellia</subject><subject>Colwellia psychrerythraea</subject><subject>Comparative analysis</subject><subject>Cumulative distribution functions</subject><subject>Datasets</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Energy Metabolism</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Gammaproteobacteria - genetics</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Marine Biology</subject><subject>Membrane Fluidity</subject><subject>Mesophiles</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen - metabolism</subject><subject>Proteomics</subject><subject>Psychrophiles</subject><subject>Species Specificity</subject><subject>Thermophilic microorganisms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhS0EosvCmQtCFgckDmnHsRM7l0rVClqklaignC0nmTRZeePFTgr5A_xunO6qC1x6sqz53rNn5hHymsEpA8nPdr0Jp5CBkHnOIH1CFgwKluSigKdkAZDKRIlUnJAXIWwAoMgUPCcnLAfBJRQL8vumRXodpqr1btd2tqvoumswDJNFagL9indoLNa0nOgQ0Uvs3RbpN_wxYl8hdQ1dOfsTre0M3d37oJ-G1hs0lIurKPJuvG33wuhu-ppeezfg_e2iN3YKGF6SZ42xAV8dziX5_unjzeoqWX-5_Ly6WCdVJrMhURlnPMuarJQFMJHynDMFNa8VF0oZXptGiozldQmFwErIsqmFSk1VNU08GF-S873vbiy3WFfYD95YvfPd1vhJO9Ppfyt91-pbd6dZfCdjEA3eHwy8iyMIg952oYrtmx7dGHSuhEilfBxMIeUg8jSC7_4DN270cS4zwwTjKu5qSc72UOVdCB6bhy8z0HMS9JwEfUxCVLz9u9Mjf1h9BD4cgFl5tEs1Z3pOEdfNaO2Av4bI0kfYiLzZI5swOP_AcC5zFut_AKDi0mM</recordid><startdate>20050802</startdate><enddate>20050802</enddate><creator>Methé, Barbara A.</creator><creator>Nelson, Karen E.</creator><creator>Deming, Jody W.</creator><creator>Momen, Bahram</creator><creator>Melamud, Eugene</creator><creator>Zhang, Xijun</creator><creator>Moult, John</creator><creator>Madupu, Ramana</creator><creator>Nelson, William C.</creator><creator>Dodson, Robert J.</creator><creator>Brinkac, Lauren M.</creator><creator>Daugherty, Sean C.</creator><creator>Durkin, Anthony S.</creator><creator>DeBoy, Robert T.</creator><creator>Kolonay, James F.</creator><creator>Sullivan, Steven A.</creator><creator>Zhou, Liwei</creator><creator>Davidsen, Tanja M.</creator><creator>Wu, Martin</creator><creator>Huston, Adrienne L.</creator><creator>Lewis, Matthew</creator><creator>Weaver, Bruce</creator><creator>Weidman, Janice F.</creator><creator>Khouri, Hoda</creator><creator>Utterback, Terry R.</creator><creator>Feldblyum, Tamara V.</creator><creator>Fraser, Claire M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050802</creationdate><title>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</title><author>Methé, Barbara A. ; Nelson, Karen E. ; Deming, Jody W. ; Momen, Bahram ; Melamud, Eugene ; Zhang, Xijun ; Moult, John ; Madupu, Ramana ; Nelson, William C. ; Dodson, Robert J. ; Brinkac, Lauren M. ; Daugherty, Sean C. ; Durkin, Anthony S. ; DeBoy, Robert T. ; Kolonay, James F. ; Sullivan, Steven A. ; Zhou, Liwei ; Davidsen, Tanja M. ; Wu, Martin ; Huston, Adrienne L. ; Lewis, Matthew ; Weaver, Bruce ; Weidman, Janice F. ; Khouri, Hoda ; Utterback, Terry R. ; Feldblyum, Tamara V. ; Fraser, Claire M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Sciences</topic><topic>Carbon - metabolism</topic><topic>Chemical composition</topic><topic>Cold</topic><topic>Cold Climate</topic><topic>Colwellia</topic><topic>Colwellia psychrerythraea</topic><topic>Comparative analysis</topic><topic>Cumulative distribution functions</topic><topic>Datasets</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Energy Metabolism</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Gammaproteobacteria - genetics</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Marine Biology</topic><topic>Membrane Fluidity</topic><topic>Mesophiles</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen - metabolism</topic><topic>Proteomics</topic><topic>Psychrophiles</topic><topic>Species Specificity</topic><topic>Thermophilic microorganisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Methé, Barbara A.</creatorcontrib><creatorcontrib>Nelson, Karen E.</creatorcontrib><creatorcontrib>Deming, Jody W.</creatorcontrib><creatorcontrib>Momen, Bahram</creatorcontrib><creatorcontrib>Melamud, Eugene</creatorcontrib><creatorcontrib>Zhang, Xijun</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Madupu, Ramana</creatorcontrib><creatorcontrib>Nelson, William C.</creatorcontrib><creatorcontrib>Dodson, Robert J.</creatorcontrib><creatorcontrib>Brinkac, Lauren M.</creatorcontrib><creatorcontrib>Daugherty, Sean C.</creatorcontrib><creatorcontrib>Durkin, Anthony S.</creatorcontrib><creatorcontrib>DeBoy, Robert T.</creatorcontrib><creatorcontrib>Kolonay, James F.</creatorcontrib><creatorcontrib>Sullivan, Steven A.</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Davidsen, Tanja M.</creatorcontrib><creatorcontrib>Wu, Martin</creatorcontrib><creatorcontrib>Huston, Adrienne L.</creatorcontrib><creatorcontrib>Lewis, Matthew</creatorcontrib><creatorcontrib>Weaver, Bruce</creatorcontrib><creatorcontrib>Weidman, Janice F.</creatorcontrib><creatorcontrib>Khouri, Hoda</creatorcontrib><creatorcontrib>Utterback, Terry R.</creatorcontrib><creatorcontrib>Feldblyum, Tamara V.</creatorcontrib><creatorcontrib>Fraser, Claire M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Methé, Barbara A.</au><au>Nelson, Karen E.</au><au>Deming, Jody W.</au><au>Momen, Bahram</au><au>Melamud, Eugene</au><au>Zhang, Xijun</au><au>Moult, John</au><au>Madupu, Ramana</au><au>Nelson, William C.</au><au>Dodson, Robert J.</au><au>Brinkac, Lauren M.</au><au>Daugherty, Sean C.</au><au>Durkin, Anthony S.</au><au>DeBoy, Robert T.</au><au>Kolonay, James F.</au><au>Sullivan, Steven A.</au><au>Zhou, Liwei</au><au>Davidsen, Tanja M.</au><au>Wu, Martin</au><au>Huston, Adrienne L.</au><au>Lewis, Matthew</au><au>Weaver, Bruce</au><au>Weidman, Janice F.</au><au>Khouri, Hoda</au><au>Utterback, Terry R.</au><au>Feldblyum, Tamara V.</au><au>Fraser, Claire M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-08-02</date><risdate>2005</risdate><volume>102</volume><issue>31</issue><spage>10913</spage><epage>10918</epage><pages>10913-10918</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16043709</pmid><doi>10.1073/pnas.0504766102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (31), p.10913-10918 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201413804 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino acids Amino Acids - analysis Bacteria Bacterial Proteins - chemistry Bacterial Proteins - genetics Biological Sciences Carbon - metabolism Chemical composition Cold Cold Climate Colwellia Colwellia psychrerythraea Comparative analysis Cumulative distribution functions Datasets DNA, Bacterial - chemistry DNA, Bacterial - genetics Energy Metabolism Environmental science Enzymes Gammaproteobacteria - genetics Gammaproteobacteria - metabolism Genome, Bacterial Genomes Genomics Marine Biology Membrane Fluidity Mesophiles Models, Biological Molecular Sequence Data Nitrogen - metabolism Proteomics Psychrophiles Species Specificity Thermophilic microorganisms |
title | The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Psychrophilic%20Lifestyle%20as%20Revealed%20by%20the%20Genome%20Sequence%20of%20Colwellia%20psychrerythraea%2034H%20through%20Genomic%20and%20Proteomic%20Analyses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Meth%C3%A9,%20Barbara%20A.&rft.date=2005-08-02&rft.volume=102&rft.issue=31&rft.spage=10913&rft.epage=10918&rft.pages=10913-10918&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0504766102&rft_dat=%3Cjstor_proqu%3E3376191%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201413804&rft_id=info:pmid/16043709&rft_jstor_id=3376191&rfr_iscdi=true |