The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses

The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-08, Vol.102 (31), p.10913-10918
Hauptverfasser: Methé, Barbara A., Nelson, Karen E., Deming, Jody W., Momen, Bahram, Melamud, Eugene, Zhang, Xijun, Moult, John, Madupu, Ramana, Nelson, William C., Dodson, Robert J., Brinkac, Lauren M., Daugherty, Sean C., Durkin, Anthony S., DeBoy, Robert T., Kolonay, James F., Sullivan, Steven A., Zhou, Liwei, Davidsen, Tanja M., Wu, Martin, Huston, Adrienne L., Lewis, Matthew, Weaver, Bruce, Weidman, Janice F., Khouri, Hoda, Utterback, Terry R., Feldblyum, Tamara V., Fraser, Claire M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10918
container_issue 31
container_start_page 10913
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Methé, Barbara A.
Nelson, Karen E.
Deming, Jody W.
Momen, Bahram
Melamud, Eugene
Zhang, Xijun
Moult, John
Madupu, Ramana
Nelson, William C.
Dodson, Robert J.
Brinkac, Lauren M.
Daugherty, Sean C.
Durkin, Anthony S.
DeBoy, Robert T.
Kolonay, James F.
Sullivan, Steven A.
Zhou, Liwei
Davidsen, Tanja M.
Wu, Martin
Huston, Adrienne L.
Lewis, Matthew
Weaver, Bruce
Weidman, Janice F.
Khouri, Hoda
Utterback, Terry R.
Feldblyum, Tamara V.
Fraser, Claire M.
description The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.
doi_str_mv 10.1073/pnas.0504766102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201413804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3376191</jstor_id><sourcerecordid>3376191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhS0EosvCmQtCFgckDmnHsRM7l0rVClqklaignC0nmTRZeePFTgr5A_xunO6qC1x6sqz53rNn5hHymsEpA8nPdr0Jp5CBkHnOIH1CFgwKluSigKdkAZDKRIlUnJAXIWwAoMgUPCcnLAfBJRQL8vumRXodpqr1btd2tqvoumswDJNFagL9indoLNa0nOgQ0Uvs3RbpN_wxYl8hdQ1dOfsTre0M3d37oJ-G1hs0lIurKPJuvG33wuhu-ppeezfg_e2iN3YKGF6SZ42xAV8dziX5_unjzeoqWX-5_Ly6WCdVJrMhURlnPMuarJQFMJHynDMFNa8VF0oZXptGiozldQmFwErIsqmFSk1VNU08GF-S873vbiy3WFfYD95YvfPd1vhJO9Ppfyt91-pbd6dZfCdjEA3eHwy8iyMIg952oYrtmx7dGHSuhEilfBxMIeUg8jSC7_4DN270cS4zwwTjKu5qSc72UOVdCB6bhy8z0HMS9JwEfUxCVLz9u9Mjf1h9BD4cgFl5tEs1Z3pOEdfNaO2Av4bI0kfYiLzZI5swOP_AcC5zFut_AKDi0mM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201413804</pqid></control><display><type>article</type><title>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Methé, Barbara A. ; Nelson, Karen E. ; Deming, Jody W. ; Momen, Bahram ; Melamud, Eugene ; Zhang, Xijun ; Moult, John ; Madupu, Ramana ; Nelson, William C. ; Dodson, Robert J. ; Brinkac, Lauren M. ; Daugherty, Sean C. ; Durkin, Anthony S. ; DeBoy, Robert T. ; Kolonay, James F. ; Sullivan, Steven A. ; Zhou, Liwei ; Davidsen, Tanja M. ; Wu, Martin ; Huston, Adrienne L. ; Lewis, Matthew ; Weaver, Bruce ; Weidman, Janice F. ; Khouri, Hoda ; Utterback, Terry R. ; Feldblyum, Tamara V. ; Fraser, Claire M.</creator><creatorcontrib>Methé, Barbara A. ; Nelson, Karen E. ; Deming, Jody W. ; Momen, Bahram ; Melamud, Eugene ; Zhang, Xijun ; Moult, John ; Madupu, Ramana ; Nelson, William C. ; Dodson, Robert J. ; Brinkac, Lauren M. ; Daugherty, Sean C. ; Durkin, Anthony S. ; DeBoy, Robert T. ; Kolonay, James F. ; Sullivan, Steven A. ; Zhou, Liwei ; Davidsen, Tanja M. ; Wu, Martin ; Huston, Adrienne L. ; Lewis, Matthew ; Weaver, Bruce ; Weidman, Janice F. ; Khouri, Hoda ; Utterback, Terry R. ; Feldblyum, Tamara V. ; Fraser, Claire M.</creatorcontrib><description>The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0504766102</identifier><identifier>PMID: 16043709</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino acids ; Amino Acids - analysis ; Bacteria ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Biological Sciences ; Carbon - metabolism ; Chemical composition ; Cold ; Cold Climate ; Colwellia ; Colwellia psychrerythraea ; Comparative analysis ; Cumulative distribution functions ; Datasets ; DNA, Bacterial - chemistry ; DNA, Bacterial - genetics ; Energy Metabolism ; Environmental science ; Enzymes ; Gammaproteobacteria - genetics ; Gammaproteobacteria - metabolism ; Genome, Bacterial ; Genomes ; Genomics ; Marine Biology ; Membrane Fluidity ; Mesophiles ; Models, Biological ; Molecular Sequence Data ; Nitrogen - metabolism ; Proteomics ; Psychrophiles ; Species Specificity ; Thermophilic microorganisms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (31), p.10913-10918</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 2, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</citedby><cites>FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3376191$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3376191$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16043709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Methé, Barbara A.</creatorcontrib><creatorcontrib>Nelson, Karen E.</creatorcontrib><creatorcontrib>Deming, Jody W.</creatorcontrib><creatorcontrib>Momen, Bahram</creatorcontrib><creatorcontrib>Melamud, Eugene</creatorcontrib><creatorcontrib>Zhang, Xijun</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Madupu, Ramana</creatorcontrib><creatorcontrib>Nelson, William C.</creatorcontrib><creatorcontrib>Dodson, Robert J.</creatorcontrib><creatorcontrib>Brinkac, Lauren M.</creatorcontrib><creatorcontrib>Daugherty, Sean C.</creatorcontrib><creatorcontrib>Durkin, Anthony S.</creatorcontrib><creatorcontrib>DeBoy, Robert T.</creatorcontrib><creatorcontrib>Kolonay, James F.</creatorcontrib><creatorcontrib>Sullivan, Steven A.</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Davidsen, Tanja M.</creatorcontrib><creatorcontrib>Wu, Martin</creatorcontrib><creatorcontrib>Huston, Adrienne L.</creatorcontrib><creatorcontrib>Lewis, Matthew</creatorcontrib><creatorcontrib>Weaver, Bruce</creatorcontrib><creatorcontrib>Weidman, Janice F.</creatorcontrib><creatorcontrib>Khouri, Hoda</creatorcontrib><creatorcontrib>Utterback, Terry R.</creatorcontrib><creatorcontrib>Feldblyum, Tamara V.</creatorcontrib><creatorcontrib>Fraser, Claire M.</creatorcontrib><title>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.</description><subject>Amino acids</subject><subject>Amino Acids - analysis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Sciences</subject><subject>Carbon - metabolism</subject><subject>Chemical composition</subject><subject>Cold</subject><subject>Cold Climate</subject><subject>Colwellia</subject><subject>Colwellia psychrerythraea</subject><subject>Comparative analysis</subject><subject>Cumulative distribution functions</subject><subject>Datasets</subject><subject>DNA, Bacterial - chemistry</subject><subject>DNA, Bacterial - genetics</subject><subject>Energy Metabolism</subject><subject>Environmental science</subject><subject>Enzymes</subject><subject>Gammaproteobacteria - genetics</subject><subject>Gammaproteobacteria - metabolism</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Marine Biology</subject><subject>Membrane Fluidity</subject><subject>Mesophiles</subject><subject>Models, Biological</subject><subject>Molecular Sequence Data</subject><subject>Nitrogen - metabolism</subject><subject>Proteomics</subject><subject>Psychrophiles</subject><subject>Species Specificity</subject><subject>Thermophilic microorganisms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkFv1DAQhS0EosvCmQtCFgckDmnHsRM7l0rVClqklaignC0nmTRZeePFTgr5A_xunO6qC1x6sqz53rNn5hHymsEpA8nPdr0Jp5CBkHnOIH1CFgwKluSigKdkAZDKRIlUnJAXIWwAoMgUPCcnLAfBJRQL8vumRXodpqr1btd2tqvoumswDJNFagL9indoLNa0nOgQ0Uvs3RbpN_wxYl8hdQ1dOfsTre0M3d37oJ-G1hs0lIurKPJuvG33wuhu-ppeezfg_e2iN3YKGF6SZ42xAV8dziX5_unjzeoqWX-5_Ly6WCdVJrMhURlnPMuarJQFMJHynDMFNa8VF0oZXptGiozldQmFwErIsqmFSk1VNU08GF-S873vbiy3WFfYD95YvfPd1vhJO9Ppfyt91-pbd6dZfCdjEA3eHwy8iyMIg952oYrtmx7dGHSuhEilfBxMIeUg8jSC7_4DN270cS4zwwTjKu5qSc72UOVdCB6bhy8z0HMS9JwEfUxCVLz9u9Mjf1h9BD4cgFl5tEs1Z3pOEdfNaO2Av4bI0kfYiLzZI5swOP_AcC5zFut_AKDi0mM</recordid><startdate>20050802</startdate><enddate>20050802</enddate><creator>Methé, Barbara A.</creator><creator>Nelson, Karen E.</creator><creator>Deming, Jody W.</creator><creator>Momen, Bahram</creator><creator>Melamud, Eugene</creator><creator>Zhang, Xijun</creator><creator>Moult, John</creator><creator>Madupu, Ramana</creator><creator>Nelson, William C.</creator><creator>Dodson, Robert J.</creator><creator>Brinkac, Lauren M.</creator><creator>Daugherty, Sean C.</creator><creator>Durkin, Anthony S.</creator><creator>DeBoy, Robert T.</creator><creator>Kolonay, James F.</creator><creator>Sullivan, Steven A.</creator><creator>Zhou, Liwei</creator><creator>Davidsen, Tanja M.</creator><creator>Wu, Martin</creator><creator>Huston, Adrienne L.</creator><creator>Lewis, Matthew</creator><creator>Weaver, Bruce</creator><creator>Weidman, Janice F.</creator><creator>Khouri, Hoda</creator><creator>Utterback, Terry R.</creator><creator>Feldblyum, Tamara V.</creator><creator>Fraser, Claire M.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>H99</scope><scope>L.F</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050802</creationdate><title>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</title><author>Methé, Barbara A. ; Nelson, Karen E. ; Deming, Jody W. ; Momen, Bahram ; Melamud, Eugene ; Zhang, Xijun ; Moult, John ; Madupu, Ramana ; Nelson, William C. ; Dodson, Robert J. ; Brinkac, Lauren M. ; Daugherty, Sean C. ; Durkin, Anthony S. ; DeBoy, Robert T. ; Kolonay, James F. ; Sullivan, Steven A. ; Zhou, Liwei ; Davidsen, Tanja M. ; Wu, Martin ; Huston, Adrienne L. ; Lewis, Matthew ; Weaver, Bruce ; Weidman, Janice F. ; Khouri, Hoda ; Utterback, Terry R. ; Feldblyum, Tamara V. ; Fraser, Claire M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c575t-8531355f5b790142363180d3d83488a3daf74516db094ec47bfd482accff82a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino acids</topic><topic>Amino Acids - analysis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Sciences</topic><topic>Carbon - metabolism</topic><topic>Chemical composition</topic><topic>Cold</topic><topic>Cold Climate</topic><topic>Colwellia</topic><topic>Colwellia psychrerythraea</topic><topic>Comparative analysis</topic><topic>Cumulative distribution functions</topic><topic>Datasets</topic><topic>DNA, Bacterial - chemistry</topic><topic>DNA, Bacterial - genetics</topic><topic>Energy Metabolism</topic><topic>Environmental science</topic><topic>Enzymes</topic><topic>Gammaproteobacteria - genetics</topic><topic>Gammaproteobacteria - metabolism</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Marine Biology</topic><topic>Membrane Fluidity</topic><topic>Mesophiles</topic><topic>Models, Biological</topic><topic>Molecular Sequence Data</topic><topic>Nitrogen - metabolism</topic><topic>Proteomics</topic><topic>Psychrophiles</topic><topic>Species Specificity</topic><topic>Thermophilic microorganisms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Methé, Barbara A.</creatorcontrib><creatorcontrib>Nelson, Karen E.</creatorcontrib><creatorcontrib>Deming, Jody W.</creatorcontrib><creatorcontrib>Momen, Bahram</creatorcontrib><creatorcontrib>Melamud, Eugene</creatorcontrib><creatorcontrib>Zhang, Xijun</creatorcontrib><creatorcontrib>Moult, John</creatorcontrib><creatorcontrib>Madupu, Ramana</creatorcontrib><creatorcontrib>Nelson, William C.</creatorcontrib><creatorcontrib>Dodson, Robert J.</creatorcontrib><creatorcontrib>Brinkac, Lauren M.</creatorcontrib><creatorcontrib>Daugherty, Sean C.</creatorcontrib><creatorcontrib>Durkin, Anthony S.</creatorcontrib><creatorcontrib>DeBoy, Robert T.</creatorcontrib><creatorcontrib>Kolonay, James F.</creatorcontrib><creatorcontrib>Sullivan, Steven A.</creatorcontrib><creatorcontrib>Zhou, Liwei</creatorcontrib><creatorcontrib>Davidsen, Tanja M.</creatorcontrib><creatorcontrib>Wu, Martin</creatorcontrib><creatorcontrib>Huston, Adrienne L.</creatorcontrib><creatorcontrib>Lewis, Matthew</creatorcontrib><creatorcontrib>Weaver, Bruce</creatorcontrib><creatorcontrib>Weidman, Janice F.</creatorcontrib><creatorcontrib>Khouri, Hoda</creatorcontrib><creatorcontrib>Utterback, Terry R.</creatorcontrib><creatorcontrib>Feldblyum, Tamara V.</creatorcontrib><creatorcontrib>Fraser, Claire M.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ASFA: Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Marine Biotechnology Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Methé, Barbara A.</au><au>Nelson, Karen E.</au><au>Deming, Jody W.</au><au>Momen, Bahram</au><au>Melamud, Eugene</au><au>Zhang, Xijun</au><au>Moult, John</au><au>Madupu, Ramana</au><au>Nelson, William C.</au><au>Dodson, Robert J.</au><au>Brinkac, Lauren M.</au><au>Daugherty, Sean C.</au><au>Durkin, Anthony S.</au><au>DeBoy, Robert T.</au><au>Kolonay, James F.</au><au>Sullivan, Steven A.</au><au>Zhou, Liwei</au><au>Davidsen, Tanja M.</au><au>Wu, Martin</au><au>Huston, Adrienne L.</au><au>Lewis, Matthew</au><au>Weaver, Bruce</au><au>Weidman, Janice F.</au><au>Khouri, Hoda</au><au>Utterback, Terry R.</au><au>Feldblyum, Tamara V.</au><au>Fraser, Claire M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-08-02</date><risdate>2005</risdate><volume>102</volume><issue>31</issue><spage>10913</spage><epage>10918</epage><pages>10913-10918</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The completion of the 5,373,180-bp genome sequence of the marine psychrophilic bacterium Colwellia psychrerythraea 34H, a model for the study of life in permanently cold environments, reveals capabilities important to carbon and nutrient cycling, bioremediation, production of secondary metabolites, and cold-adapted enzymes. From a genomic perspective, cold adaptation is suggested in several broad categories involving changes to the cell membrane fluidity, uptake and synthesis of compounds conferring cryotolerance, and strategies to overcome temperature-dependent barriers to carbon uptake. Modeling of three-dimensional protein homology from bacteria representing a range of optimal growth temperatures suggests changes to proteome composition that may enhance enzyme effectiveness at low temperatures. Comparative genome analyses suggest that the psychrophilic lifestyle is most likely conferred not by a unique set of genes but by a collection of synergistic changes in overall genome content and amino acid composition.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16043709</pmid><doi>10.1073/pnas.0504766102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-08, Vol.102 (31), p.10913-10918
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201413804
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino acids
Amino Acids - analysis
Bacteria
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Biological Sciences
Carbon - metabolism
Chemical composition
Cold
Cold Climate
Colwellia
Colwellia psychrerythraea
Comparative analysis
Cumulative distribution functions
Datasets
DNA, Bacterial - chemistry
DNA, Bacterial - genetics
Energy Metabolism
Environmental science
Enzymes
Gammaproteobacteria - genetics
Gammaproteobacteria - metabolism
Genome, Bacterial
Genomes
Genomics
Marine Biology
Membrane Fluidity
Mesophiles
Models, Biological
Molecular Sequence Data
Nitrogen - metabolism
Proteomics
Psychrophiles
Species Specificity
Thermophilic microorganisms
title The Psychrophilic Lifestyle as Revealed by the Genome Sequence of Colwellia psychrerythraea 34H through Genomic and Proteomic Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T00%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Psychrophilic%20Lifestyle%20as%20Revealed%20by%20the%20Genome%20Sequence%20of%20Colwellia%20psychrerythraea%2034H%20through%20Genomic%20and%20Proteomic%20Analyses&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Meth%C3%A9,%20Barbara%20A.&rft.date=2005-08-02&rft.volume=102&rft.issue=31&rft.spage=10913&rft.epage=10918&rft.pages=10913-10918&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0504766102&rft_dat=%3Cjstor_proqu%3E3376191%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201413804&rft_id=info:pmid/16043709&rft_jstor_id=3376191&rfr_iscdi=true