Structural inference of native and partially folded RNA by high-throughput contact mapping

The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-03, Vol.105 (11), p.4144-4149
Hauptverfasser: Das, Rhiju, Kudaravalli, Madhuri, Jonikas, Magdalena, Laederach, Alain, Fong, Robert, Schwans, Jason P, Baker, David, Piccirilli, Joseph A, Altman, Russ B, Herschlag, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4149
container_issue 11
container_start_page 4144
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Das, Rhiju
Kudaravalli, Madhuri
Jonikas, Magdalena
Laederach, Alain
Fong, Robert
Schwans, Jason P
Baker, David
Piccirilli, Joseph A
Altman, Russ B
Herschlag, Daniel
description The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendered their characterization by high-resolution structural approaches difficult or even intractable. Here we introduce a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states. Multiplexed hydroxyl radical (·OH) cleavage analysis (MOHCA) enables the high-throughput detection of numerous pairs of contacting residues via random incorporation of radical cleavage agents followed by two-dimensional gel electrophoresis. We validated this technology by recapitulating the unfolded and native states of a well studied model RNA, the P4-P6 domain of the Tetrahymena ribozyme, at subhelical resolution. We then applied MOHCA to a recently discovered third state of the P4-P6 RNA that is stabilized by high concentrations of monovalent salt and whose partial order precludes conventional techniques for structure determination. The three-dimensional portrait of a compact, non-native RNA state reveals a well ordered subset of native tertiary contacts, in contrast to the dynamic but otherwise similar molten globule states of proteins. With its applicability to nearly any solution state, we expect MOHCA to be a powerful tool for illuminating the many functional structures of large RNA molecules and RNA/protein complexes.
doi_str_mv 10.1073/pnas.0709032105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201412607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25461385</jstor_id><sourcerecordid>25461385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-32b74b37cdc8ab8bbcae483a1137c5339a604ac4e11449fd333a9eedf086e13f3</originalsourceid><addsrcrecordid>eNp9kcuLFDEQxoMo7jh69qQGD-KldyuvflyEZfEFi4LrXryEdDrdnaEnaZP04vz3ZphhRz14ClR-9VV99SH0nMA5gYpdzE7Fc6igAUYJiAdoRaAhRckbeIhWALQqak75GXoS4wYAGlHDY3RGakYpQL1CP25SWHRagpqwdb0JxmmDfY-dSvbOYOU6PKuQrJqmHe791JkOf_tyidsdHu0wFmkMfhnGeUlYe5eUTnir5tm64Sl61KspmmfHd41uP7z_fvWpuP768fPV5XWhhaCpYLSteMsq3elatXXbamV4zRQhuSYYa1QJXGluCOG86TvGmGqM6XqoS0NYz9bo3UF3Xtqt6bRxKbuRc7BbFXbSKyv__nF2lIO_k5Q1rCppFnhzFAj-52JiklsbtZkm5YxfoqQgSsFBZPD1P-DGL8Flc5khnNAyZ7JGFwdIBx9jMP39JgTkPjS5D02eQssdL_80cOKPKWXg1RHYd57khCRE8nyWTLz9PyH7ZZqS-ZUy-uKAbmLy4Z6lgpeE1eI0rFdeqiHYKG9vsj2WN6kELRn7DT1Kvzk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201412607</pqid></control><display><type>article</type><title>Structural inference of native and partially folded RNA by high-throughput contact mapping</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Das, Rhiju ; Kudaravalli, Madhuri ; Jonikas, Magdalena ; Laederach, Alain ; Fong, Robert ; Schwans, Jason P ; Baker, David ; Piccirilli, Joseph A ; Altman, Russ B ; Herschlag, Daniel</creator><creatorcontrib>Das, Rhiju ; Kudaravalli, Madhuri ; Jonikas, Magdalena ; Laederach, Alain ; Fong, Robert ; Schwans, Jason P ; Baker, David ; Piccirilli, Joseph A ; Altman, Russ B ; Herschlag, Daniel</creatorcontrib><description>The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendered their characterization by high-resolution structural approaches difficult or even intractable. Here we introduce a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states. Multiplexed hydroxyl radical (·OH) cleavage analysis (MOHCA) enables the high-throughput detection of numerous pairs of contacting residues via random incorporation of radical cleavage agents followed by two-dimensional gel electrophoresis. We validated this technology by recapitulating the unfolded and native states of a well studied model RNA, the P4-P6 domain of the Tetrahymena ribozyme, at subhelical resolution. We then applied MOHCA to a recently discovered third state of the P4-P6 RNA that is stabilized by high concentrations of monovalent salt and whose partial order precludes conventional techniques for structure determination. The three-dimensional portrait of a compact, non-native RNA state reveals a well ordered subset of native tertiary contacts, in contrast to the dynamic but otherwise similar molten globule states of proteins. With its applicability to nearly any solution state, we expect MOHCA to be a powerful tool for illuminating the many functional structures of large RNA molecules and RNA/protein complexes.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0709032105</identifier><identifier>PMID: 18322008</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Base Sequence ; Biochemistry ; Biological Sciences ; Crystal structure ; Free radicals ; Gels ; Globules ; Hydroxyl Radical - chemistry ; Hydroxyl radicals ; Inference ; Ion concentration ; Methods ; Models, Molecular ; Molecular Sequence Data ; Molecules ; Nucleic Acid Conformation ; Proteins ; Reproducibility of Results ; Ribonucleic acid ; Ribozymes ; RNA ; RNA - chemistry ; RNA - metabolism ; Tetrahymena</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (11), p.4144-4149</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Mar 18, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-32b74b37cdc8ab8bbcae483a1137c5339a604ac4e11449fd333a9eedf086e13f3</citedby><cites>FETCH-LOGICAL-c552t-32b74b37cdc8ab8bbcae483a1137c5339a604ac4e11449fd333a9eedf086e13f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/11.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25461385$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25461385$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18322008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Das, Rhiju</creatorcontrib><creatorcontrib>Kudaravalli, Madhuri</creatorcontrib><creatorcontrib>Jonikas, Magdalena</creatorcontrib><creatorcontrib>Laederach, Alain</creatorcontrib><creatorcontrib>Fong, Robert</creatorcontrib><creatorcontrib>Schwans, Jason P</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Piccirilli, Joseph A</creatorcontrib><creatorcontrib>Altman, Russ B</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><title>Structural inference of native and partially folded RNA by high-throughput contact mapping</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendered their characterization by high-resolution structural approaches difficult or even intractable. Here we introduce a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states. Multiplexed hydroxyl radical (·OH) cleavage analysis (MOHCA) enables the high-throughput detection of numerous pairs of contacting residues via random incorporation of radical cleavage agents followed by two-dimensional gel electrophoresis. We validated this technology by recapitulating the unfolded and native states of a well studied model RNA, the P4-P6 domain of the Tetrahymena ribozyme, at subhelical resolution. We then applied MOHCA to a recently discovered third state of the P4-P6 RNA that is stabilized by high concentrations of monovalent salt and whose partial order precludes conventional techniques for structure determination. The three-dimensional portrait of a compact, non-native RNA state reveals a well ordered subset of native tertiary contacts, in contrast to the dynamic but otherwise similar molten globule states of proteins. With its applicability to nearly any solution state, we expect MOHCA to be a powerful tool for illuminating the many functional structures of large RNA molecules and RNA/protein complexes.</description><subject>Base Sequence</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Free radicals</subject><subject>Gels</subject><subject>Globules</subject><subject>Hydroxyl Radical - chemistry</subject><subject>Hydroxyl radicals</subject><subject>Inference</subject><subject>Ion concentration</subject><subject>Methods</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Proteins</subject><subject>Reproducibility of Results</subject><subject>Ribonucleic acid</subject><subject>Ribozymes</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>Tetrahymena</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcuLFDEQxoMo7jh69qQGD-KldyuvflyEZfEFi4LrXryEdDrdnaEnaZP04vz3ZphhRz14ClR-9VV99SH0nMA5gYpdzE7Fc6igAUYJiAdoRaAhRckbeIhWALQqak75GXoS4wYAGlHDY3RGakYpQL1CP25SWHRagpqwdb0JxmmDfY-dSvbOYOU6PKuQrJqmHe791JkOf_tyidsdHu0wFmkMfhnGeUlYe5eUTnir5tm64Sl61KspmmfHd41uP7z_fvWpuP768fPV5XWhhaCpYLSteMsq3elatXXbamV4zRQhuSYYa1QJXGluCOG86TvGmGqM6XqoS0NYz9bo3UF3Xtqt6bRxKbuRc7BbFXbSKyv__nF2lIO_k5Q1rCppFnhzFAj-52JiklsbtZkm5YxfoqQgSsFBZPD1P-DGL8Flc5khnNAyZ7JGFwdIBx9jMP39JgTkPjS5D02eQssdL_80cOKPKWXg1RHYd57khCRE8nyWTLz9PyH7ZZqS-ZUy-uKAbmLy4Z6lgpeE1eI0rFdeqiHYKG9vsj2WN6kELRn7DT1Kvzk</recordid><startdate>20080318</startdate><enddate>20080318</enddate><creator>Das, Rhiju</creator><creator>Kudaravalli, Madhuri</creator><creator>Jonikas, Magdalena</creator><creator>Laederach, Alain</creator><creator>Fong, Robert</creator><creator>Schwans, Jason P</creator><creator>Baker, David</creator><creator>Piccirilli, Joseph A</creator><creator>Altman, Russ B</creator><creator>Herschlag, Daniel</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20080318</creationdate><title>Structural inference of native and partially folded RNA by high-throughput contact mapping</title><author>Das, Rhiju ; Kudaravalli, Madhuri ; Jonikas, Magdalena ; Laederach, Alain ; Fong, Robert ; Schwans, Jason P ; Baker, David ; Piccirilli, Joseph A ; Altman, Russ B ; Herschlag, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-32b74b37cdc8ab8bbcae483a1137c5339a604ac4e11449fd333a9eedf086e13f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Base Sequence</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Free radicals</topic><topic>Gels</topic><topic>Globules</topic><topic>Hydroxyl Radical - chemistry</topic><topic>Hydroxyl radicals</topic><topic>Inference</topic><topic>Ion concentration</topic><topic>Methods</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Proteins</topic><topic>Reproducibility of Results</topic><topic>Ribonucleic acid</topic><topic>Ribozymes</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>Tetrahymena</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Das, Rhiju</creatorcontrib><creatorcontrib>Kudaravalli, Madhuri</creatorcontrib><creatorcontrib>Jonikas, Magdalena</creatorcontrib><creatorcontrib>Laederach, Alain</creatorcontrib><creatorcontrib>Fong, Robert</creatorcontrib><creatorcontrib>Schwans, Jason P</creatorcontrib><creatorcontrib>Baker, David</creatorcontrib><creatorcontrib>Piccirilli, Joseph A</creatorcontrib><creatorcontrib>Altman, Russ B</creatorcontrib><creatorcontrib>Herschlag, Daniel</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Das, Rhiju</au><au>Kudaravalli, Madhuri</au><au>Jonikas, Magdalena</au><au>Laederach, Alain</au><au>Fong, Robert</au><au>Schwans, Jason P</au><au>Baker, David</au><au>Piccirilli, Joseph A</au><au>Altman, Russ B</au><au>Herschlag, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural inference of native and partially folded RNA by high-throughput contact mapping</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-03-18</date><risdate>2008</risdate><volume>105</volume><issue>11</issue><spage>4144</spage><epage>4149</epage><pages>4144-4149</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The biological behaviors of ribozymes, riboswitches, and numerous other functional RNA molecules are critically dependent on their tertiary folding and their ability to sample multiple functional states. The conformational heterogeneity and partially folded nature of most of these states has rendered their characterization by high-resolution structural approaches difficult or even intractable. Here we introduce a method to rapidly infer the tertiary helical arrangements of large RNA molecules in their native and non-native solution states. Multiplexed hydroxyl radical (·OH) cleavage analysis (MOHCA) enables the high-throughput detection of numerous pairs of contacting residues via random incorporation of radical cleavage agents followed by two-dimensional gel electrophoresis. We validated this technology by recapitulating the unfolded and native states of a well studied model RNA, the P4-P6 domain of the Tetrahymena ribozyme, at subhelical resolution. We then applied MOHCA to a recently discovered third state of the P4-P6 RNA that is stabilized by high concentrations of monovalent salt and whose partial order precludes conventional techniques for structure determination. The three-dimensional portrait of a compact, non-native RNA state reveals a well ordered subset of native tertiary contacts, in contrast to the dynamic but otherwise similar molten globule states of proteins. With its applicability to nearly any solution state, we expect MOHCA to be a powerful tool for illuminating the many functional structures of large RNA molecules and RNA/protein complexes.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18322008</pmid><doi>10.1073/pnas.0709032105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-03, Vol.105 (11), p.4144-4149
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201412607
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Base Sequence
Biochemistry
Biological Sciences
Crystal structure
Free radicals
Gels
Globules
Hydroxyl Radical - chemistry
Hydroxyl radicals
Inference
Ion concentration
Methods
Models, Molecular
Molecular Sequence Data
Molecules
Nucleic Acid Conformation
Proteins
Reproducibility of Results
Ribonucleic acid
Ribozymes
RNA
RNA - chemistry
RNA - metabolism
Tetrahymena
title Structural inference of native and partially folded RNA by high-throughput contact mapping
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T03%3A18%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20inference%20of%20native%20and%20partially%20folded%20RNA%20by%20high-throughput%20contact%20mapping&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Das,%20Rhiju&rft.date=2008-03-18&rft.volume=105&rft.issue=11&rft.spage=4144&rft.epage=4149&rft.pages=4144-4149&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0709032105&rft_dat=%3Cjstor_proqu%3E25461385%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201412607&rft_id=info:pmid/18322008&rft_jstor_id=25461385&rfr_iscdi=true