A Method for Point Spread Function Estimation for Accurate Quantitative Imaging
Aim: A method to determine the point spread function (PSF) of an imaging system based on a set of 3-D Gaussian functions is presented for a robust estimation of the recovery corrections for accurate activity quantification in positron emission tomography (PET) and single-photon emission computed tom...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2018-03, Vol.65 (3), p.961-969 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 969 |
---|---|
container_issue | 3 |
container_start_page | 961 |
container_title | IEEE transactions on nuclear science |
container_volume | 65 |
creator | Attarwala, A. A. Hardiansyah, D. Romano, C. Roscher, M. Molina-Duran, F. Wangler, B. Glatting, G. |
description | Aim: A method to determine the point spread function (PSF) of an imaging system based on a set of 3-D Gaussian functions is presented for a robust estimation of the recovery corrections for accurate activity quantification in positron emission tomography (PET) and single-photon emission computed tomography systems. Materials and Methods: The spatial resolution of the ALBIRA II PET subsystem was determined using a 370-kBq 22 Na point source. The measured data were reconstructed with a maximum-likelihood expectation-maximization algorithm. The PSF was calculated based on the National Electrical Manufacturing Association (NEMA) NU-4 2008 protocol and on alternative methods based on three 3-D fitting functions for the xyz-directions: 1) a 3-D Gaussian function (3-D 1-Gauss) and convolutions of this function with a pixel size (3-D {\text {Gauss}}_{p} ) or source dimension of Ø 0.25 mm (3-D {\text {Gauss}}_{s} ); 2) the sum of two Gaussian functions (3-D 2-Gauss); and 3) three Gaussian functions (3-D 3-Gauss). Goodness of fit and the method based on an Akaike information criterion were used for choosing the best function. A MATLAB-based mathematical source simulation study was performed to quantify the relevance of PSFs calculated from the different methods. Results: Based on the PSFs calculated from the NEMA protocol, the full-width at half-maximum (FWHM) in xyz-directions were 1.68, 1.51, and 1.50 mm. The corresponding results using 3-D Gauss and 3-D {\text {Gauss}}_{s} functions both were (1.87 ± 0.01), (1.70 ± 0.01), and (1.50 ± 0.01) mm and for 3-D {\text {Gauss}}_{p} were (1.84 ± 0.01), (1.67 ± 0.01), and (1.47 ± 0.01) mm. The FWHMs calculated with 3-D 2-Gauss and 3-D 3-Gauss were (1.78 ± 0.01), (1.74 ± 0.01), and (1.83 ± 0.01) mm and (1.76 ± 0.03), (1.72 ± 0.03), and (1.78 ± 0.03) mm, respectively. All coefficients of variations of the fit parameters were ≤29% and the adjusted R^{2} were ≥0.99. Based on Akaike weights w_{i} , the 3-D 3-Gauss method was best supported by the data ( w_{i} |
doi_str_mv | 10.1109/TNS.2018.2806843 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2014086045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8292877</ieee_id><sourcerecordid>2014086045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-64d03cc19dae2b6aed3b64f60d3d53b0a129700242a4e43da5db53f48e7480a33</originalsourceid><addsrcrecordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ125yLKXVQrVK63nJJtm6xe7WJCv435va4mlmeO_NMD-EbgmMCAH1sH5ZjSgQOaIScsnZGRoQIWRGRCHP0QCSlCmu1CW6CmGbRi5ADNByjJ9d_OgsrjuPX7umjXi1905bPOtbE5uuxdMQm53-aw-msTG919Hht163sYlJ-XZ4vtObpt1co4tafwZ3c6pD9D6bridP2WL5OJ-MF5mhisQs5xaYMURZ7WiVa2dZlfM6B8usYBVoQlUBQDnV3HFmtbCVYDWXruASNGNDdH_cu_fdV-9CLLdd79t0skwUOMgcuEguOLqM70Lwri73Pr3if0oC5QFbmbAdArI8YUuRu2Okcc792yVVVBYF-wWQAWhT</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014086045</pqid></control><display><type>article</type><title>A Method for Point Spread Function Estimation for Accurate Quantitative Imaging</title><source>IEEE Electronic Library (IEL)</source><creator>Attarwala, A. A. ; Hardiansyah, D. ; Romano, C. ; Roscher, M. ; Molina-Duran, F. ; Wangler, B. ; Glatting, G.</creator><creatorcontrib>Attarwala, A. A. ; Hardiansyah, D. ; Romano, C. ; Roscher, M. ; Molina-Duran, F. ; Wangler, B. ; Glatting, G.</creatorcontrib><description><![CDATA[Aim: A method to determine the point spread function (PSF) of an imaging system based on a set of 3-D Gaussian functions is presented for a robust estimation of the recovery corrections for accurate activity quantification in positron emission tomography (PET) and single-photon emission computed tomography systems. Materials and Methods: The spatial resolution of the ALBIRA II PET subsystem was determined using a 370-kBq 22 Na point source. The measured data were reconstructed with a maximum-likelihood expectation-maximization algorithm. The PSF was calculated based on the National Electrical Manufacturing Association (NEMA) NU-4 2008 protocol and on alternative methods based on three 3-D fitting functions for the xyz-directions: 1) a 3-D Gaussian function (3-D 1-Gauss) and convolutions of this function with a pixel size (3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{p} </tex-math></inline-formula>) or source dimension of Ø 0.25 mm (3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{s} </tex-math></inline-formula>); 2) the sum of two Gaussian functions (3-D 2-Gauss); and 3) three Gaussian functions (3-D 3-Gauss). Goodness of fit and the method based on an Akaike information criterion were used for choosing the best function. A MATLAB-based mathematical source simulation study was performed to quantify the relevance of PSFs calculated from the different methods. Results: Based on the PSFs calculated from the NEMA protocol, the full-width at half-maximum (FWHM) in xyz-directions were 1.68, 1.51, and 1.50 mm. The corresponding results using 3-D Gauss and 3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{s} </tex-math></inline-formula> functions both were (1.87 ± 0.01), (1.70 ± 0.01), and (1.50 ± 0.01) mm and for 3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{p} </tex-math></inline-formula> were (1.84 ± 0.01), (1.67 ± 0.01), and (1.47 ± 0.01) mm. The FWHMs calculated with 3-D 2-Gauss and 3-D 3-Gauss were (1.78 ± 0.01), (1.74 ± 0.01), and (1.83 ± 0.01) mm and (1.76 ± 0.03), (1.72 ± 0.03), and (1.78 ± 0.03) mm, respectively. All coefficients of variations of the fit parameters were ≤29% and the adjusted <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> were ≥0.99. Based on Akaike weights <inline-formula> <tex-math notation="LaTeX">w_{i} </tex-math></inline-formula>, the 3-D 3-Gauss method was best supported by the data (<inline-formula> <tex-math notation="LaTeX">w_{i} = 100 </tex-math></inline-formula>%). The simulation study showed a relative error in quantification of spherical lesions in the range of 15%-45% for lesions of diameters 1-5 mm compared to the PSFs based on the NEMA method. Conclusion: An alternative method to calculate the PSFs of imaging systems to accurately correct for recovery effects is presented. The proposed method includes choosing and fitting of 3-D functions, validation of fitting quality, and choosing the function best supported by the data along with an estimation of the uncertainty.]]></description><identifier>ISSN: 0018-9499</identifier><identifier>EISSN: 1558-1578</identifier><identifier>DOI: 10.1109/TNS.2018.2806843</identifier><identifier>CODEN: IETNAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Akaike information criterion (AIC) ; Computed tomography ; Computer simulation ; Detectors ; Emissions ; Error analysis ; Estimation ; Fitting ; Gaussian function ; Goodness of fit ; Image reconstruction ; Imaging ; Lesions ; Mathematical analysis ; Mathematical models ; Medical imaging ; Methods ; National Electrical Manufacturing Association (NEMA) ; Photon emission ; point spread function (PSF) ; Point spread functions ; Positron emission ; Positron emission tomography ; Recovery ; Robustness (mathematics) ; Spatial resolution ; Three-dimensional displays ; Tomography</subject><ispartof>IEEE transactions on nuclear science, 2018-03, Vol.65 (3), p.961-969</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-64d03cc19dae2b6aed3b64f60d3d53b0a129700242a4e43da5db53f48e7480a33</citedby><cites>FETCH-LOGICAL-c291t-64d03cc19dae2b6aed3b64f60d3d53b0a129700242a4e43da5db53f48e7480a33</cites><orcidid>0000-0002-4965-5089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8292877$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8292877$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Attarwala, A. A.</creatorcontrib><creatorcontrib>Hardiansyah, D.</creatorcontrib><creatorcontrib>Romano, C.</creatorcontrib><creatorcontrib>Roscher, M.</creatorcontrib><creatorcontrib>Molina-Duran, F.</creatorcontrib><creatorcontrib>Wangler, B.</creatorcontrib><creatorcontrib>Glatting, G.</creatorcontrib><title>A Method for Point Spread Function Estimation for Accurate Quantitative Imaging</title><title>IEEE transactions on nuclear science</title><addtitle>TNS</addtitle><description><![CDATA[Aim: A method to determine the point spread function (PSF) of an imaging system based on a set of 3-D Gaussian functions is presented for a robust estimation of the recovery corrections for accurate activity quantification in positron emission tomography (PET) and single-photon emission computed tomography systems. Materials and Methods: The spatial resolution of the ALBIRA II PET subsystem was determined using a 370-kBq 22 Na point source. The measured data were reconstructed with a maximum-likelihood expectation-maximization algorithm. The PSF was calculated based on the National Electrical Manufacturing Association (NEMA) NU-4 2008 protocol and on alternative methods based on three 3-D fitting functions for the xyz-directions: 1) a 3-D Gaussian function (3-D 1-Gauss) and convolutions of this function with a pixel size (3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{p} </tex-math></inline-formula>) or source dimension of Ø 0.25 mm (3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{s} </tex-math></inline-formula>); 2) the sum of two Gaussian functions (3-D 2-Gauss); and 3) three Gaussian functions (3-D 3-Gauss). Goodness of fit and the method based on an Akaike information criterion were used for choosing the best function. A MATLAB-based mathematical source simulation study was performed to quantify the relevance of PSFs calculated from the different methods. Results: Based on the PSFs calculated from the NEMA protocol, the full-width at half-maximum (FWHM) in xyz-directions were 1.68, 1.51, and 1.50 mm. The corresponding results using 3-D Gauss and 3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{s} </tex-math></inline-formula> functions both were (1.87 ± 0.01), (1.70 ± 0.01), and (1.50 ± 0.01) mm and for 3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{p} </tex-math></inline-formula> were (1.84 ± 0.01), (1.67 ± 0.01), and (1.47 ± 0.01) mm. The FWHMs calculated with 3-D 2-Gauss and 3-D 3-Gauss were (1.78 ± 0.01), (1.74 ± 0.01), and (1.83 ± 0.01) mm and (1.76 ± 0.03), (1.72 ± 0.03), and (1.78 ± 0.03) mm, respectively. All coefficients of variations of the fit parameters were ≤29% and the adjusted <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> were ≥0.99. Based on Akaike weights <inline-formula> <tex-math notation="LaTeX">w_{i} </tex-math></inline-formula>, the 3-D 3-Gauss method was best supported by the data (<inline-formula> <tex-math notation="LaTeX">w_{i} = 100 </tex-math></inline-formula>%). The simulation study showed a relative error in quantification of spherical lesions in the range of 15%-45% for lesions of diameters 1-5 mm compared to the PSFs based on the NEMA method. Conclusion: An alternative method to calculate the PSFs of imaging systems to accurately correct for recovery effects is presented. The proposed method includes choosing and fitting of 3-D functions, validation of fitting quality, and choosing the function best supported by the data along with an estimation of the uncertainty.]]></description><subject>Akaike information criterion (AIC)</subject><subject>Computed tomography</subject><subject>Computer simulation</subject><subject>Detectors</subject><subject>Emissions</subject><subject>Error analysis</subject><subject>Estimation</subject><subject>Fitting</subject><subject>Gaussian function</subject><subject>Goodness of fit</subject><subject>Image reconstruction</subject><subject>Imaging</subject><subject>Lesions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medical imaging</subject><subject>Methods</subject><subject>National Electrical Manufacturing Association (NEMA)</subject><subject>Photon emission</subject><subject>point spread function (PSF)</subject><subject>Point spread functions</subject><subject>Positron emission</subject><subject>Positron emission tomography</subject><subject>Recovery</subject><subject>Robustness (mathematics)</subject><subject>Spatial resolution</subject><subject>Three-dimensional displays</subject><subject>Tomography</subject><issn>0018-9499</issn><issn>1558-1578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1LAzEQxYMoWKt3wUvA89bJ125yLKXVQrVK63nJJtm6xe7WJCv435va4mlmeO_NMD-EbgmMCAH1sH5ZjSgQOaIScsnZGRoQIWRGRCHP0QCSlCmu1CW6CmGbRi5ADNByjJ9d_OgsrjuPX7umjXi1905bPOtbE5uuxdMQm53-aw-msTG919Hht163sYlJ-XZ4vtObpt1co4tafwZ3c6pD9D6bridP2WL5OJ-MF5mhisQs5xaYMURZ7WiVa2dZlfM6B8usYBVoQlUBQDnV3HFmtbCVYDWXruASNGNDdH_cu_fdV-9CLLdd79t0skwUOMgcuEguOLqM70Lwri73Pr3if0oC5QFbmbAdArI8YUuRu2Okcc792yVVVBYF-wWQAWhT</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Attarwala, A. A.</creator><creator>Hardiansyah, D.</creator><creator>Romano, C.</creator><creator>Roscher, M.</creator><creator>Molina-Duran, F.</creator><creator>Wangler, B.</creator><creator>Glatting, G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QL</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-4965-5089</orcidid></search><sort><creationdate>20180301</creationdate><title>A Method for Point Spread Function Estimation for Accurate Quantitative Imaging</title><author>Attarwala, A. A. ; Hardiansyah, D. ; Romano, C. ; Roscher, M. ; Molina-Duran, F. ; Wangler, B. ; Glatting, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-64d03cc19dae2b6aed3b64f60d3d53b0a129700242a4e43da5db53f48e7480a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Akaike information criterion (AIC)</topic><topic>Computed tomography</topic><topic>Computer simulation</topic><topic>Detectors</topic><topic>Emissions</topic><topic>Error analysis</topic><topic>Estimation</topic><topic>Fitting</topic><topic>Gaussian function</topic><topic>Goodness of fit</topic><topic>Image reconstruction</topic><topic>Imaging</topic><topic>Lesions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medical imaging</topic><topic>Methods</topic><topic>National Electrical Manufacturing Association (NEMA)</topic><topic>Photon emission</topic><topic>point spread function (PSF)</topic><topic>Point spread functions</topic><topic>Positron emission</topic><topic>Positron emission tomography</topic><topic>Recovery</topic><topic>Robustness (mathematics)</topic><topic>Spatial resolution</topic><topic>Three-dimensional displays</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Attarwala, A. A.</creatorcontrib><creatorcontrib>Hardiansyah, D.</creatorcontrib><creatorcontrib>Romano, C.</creatorcontrib><creatorcontrib>Roscher, M.</creatorcontrib><creatorcontrib>Molina-Duran, F.</creatorcontrib><creatorcontrib>Wangler, B.</creatorcontrib><creatorcontrib>Glatting, G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>IEEE transactions on nuclear science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Attarwala, A. A.</au><au>Hardiansyah, D.</au><au>Romano, C.</au><au>Roscher, M.</au><au>Molina-Duran, F.</au><au>Wangler, B.</au><au>Glatting, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Method for Point Spread Function Estimation for Accurate Quantitative Imaging</atitle><jtitle>IEEE transactions on nuclear science</jtitle><stitle>TNS</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>65</volume><issue>3</issue><spage>961</spage><epage>969</epage><pages>961-969</pages><issn>0018-9499</issn><eissn>1558-1578</eissn><coden>IETNAE</coden><abstract><![CDATA[Aim: A method to determine the point spread function (PSF) of an imaging system based on a set of 3-D Gaussian functions is presented for a robust estimation of the recovery corrections for accurate activity quantification in positron emission tomography (PET) and single-photon emission computed tomography systems. Materials and Methods: The spatial resolution of the ALBIRA II PET subsystem was determined using a 370-kBq 22 Na point source. The measured data were reconstructed with a maximum-likelihood expectation-maximization algorithm. The PSF was calculated based on the National Electrical Manufacturing Association (NEMA) NU-4 2008 protocol and on alternative methods based on three 3-D fitting functions for the xyz-directions: 1) a 3-D Gaussian function (3-D 1-Gauss) and convolutions of this function with a pixel size (3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{p} </tex-math></inline-formula>) or source dimension of Ø 0.25 mm (3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{s} </tex-math></inline-formula>); 2) the sum of two Gaussian functions (3-D 2-Gauss); and 3) three Gaussian functions (3-D 3-Gauss). Goodness of fit and the method based on an Akaike information criterion were used for choosing the best function. A MATLAB-based mathematical source simulation study was performed to quantify the relevance of PSFs calculated from the different methods. Results: Based on the PSFs calculated from the NEMA protocol, the full-width at half-maximum (FWHM) in xyz-directions were 1.68, 1.51, and 1.50 mm. The corresponding results using 3-D Gauss and 3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{s} </tex-math></inline-formula> functions both were (1.87 ± 0.01), (1.70 ± 0.01), and (1.50 ± 0.01) mm and for 3-D <inline-formula> <tex-math notation="LaTeX">{\text {Gauss}}_{p} </tex-math></inline-formula> were (1.84 ± 0.01), (1.67 ± 0.01), and (1.47 ± 0.01) mm. The FWHMs calculated with 3-D 2-Gauss and 3-D 3-Gauss were (1.78 ± 0.01), (1.74 ± 0.01), and (1.83 ± 0.01) mm and (1.76 ± 0.03), (1.72 ± 0.03), and (1.78 ± 0.03) mm, respectively. All coefficients of variations of the fit parameters were ≤29% and the adjusted <inline-formula> <tex-math notation="LaTeX">R^{2} </tex-math></inline-formula> were ≥0.99. Based on Akaike weights <inline-formula> <tex-math notation="LaTeX">w_{i} </tex-math></inline-formula>, the 3-D 3-Gauss method was best supported by the data (<inline-formula> <tex-math notation="LaTeX">w_{i} = 100 </tex-math></inline-formula>%). The simulation study showed a relative error in quantification of spherical lesions in the range of 15%-45% for lesions of diameters 1-5 mm compared to the PSFs based on the NEMA method. Conclusion: An alternative method to calculate the PSFs of imaging systems to accurately correct for recovery effects is presented. The proposed method includes choosing and fitting of 3-D functions, validation of fitting quality, and choosing the function best supported by the data along with an estimation of the uncertainty.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNS.2018.2806843</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-4965-5089</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9499 |
ispartof | IEEE transactions on nuclear science, 2018-03, Vol.65 (3), p.961-969 |
issn | 0018-9499 1558-1578 |
language | eng |
recordid | cdi_proquest_journals_2014086045 |
source | IEEE Electronic Library (IEL) |
subjects | Akaike information criterion (AIC) Computed tomography Computer simulation Detectors Emissions Error analysis Estimation Fitting Gaussian function Goodness of fit Image reconstruction Imaging Lesions Mathematical analysis Mathematical models Medical imaging Methods National Electrical Manufacturing Association (NEMA) Photon emission point spread function (PSF) Point spread functions Positron emission Positron emission tomography Recovery Robustness (mathematics) Spatial resolution Three-dimensional displays Tomography |
title | A Method for Point Spread Function Estimation for Accurate Quantitative Imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T10%3A13%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Method%20for%20Point%20Spread%20Function%20Estimation%20for%20Accurate%20Quantitative%20Imaging&rft.jtitle=IEEE%20transactions%20on%20nuclear%20science&rft.au=Attarwala,%20A.%20A.&rft.date=2018-03-01&rft.volume=65&rft.issue=3&rft.spage=961&rft.epage=969&rft.pages=961-969&rft.issn=0018-9499&rft.eissn=1558-1578&rft.coden=IETNAE&rft_id=info:doi/10.1109/TNS.2018.2806843&rft_dat=%3Cproquest_RIE%3E2014086045%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014086045&rft_id=info:pmid/&rft_ieee_id=8292877&rfr_iscdi=true |