Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics
In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (8), p.2785-2790 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2790 |
---|---|
container_issue | 8 |
container_start_page | 2785 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Hey, Jody Nielsen, Rasmus |
description | In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided. |
doi_str_mv | 10.1073/pnas.0611164104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201397368</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426552</jstor_id><sourcerecordid>25426552</sourcerecordid><originalsourceid>FETCH-LOGICAL-c616t-a1737573d81d30218a90908bb1ea70e5f006c8130e4ec388b1e7703d2a64d2a33</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhiMEokvhzAmIOMBp2xk7_silElpRqNSKA_RseZPJbpZsnNrOAv8er7LqFoTExZZnnnk1M6-z7CXCGYLi50NvwxlIRJQFQvEomyGUOJdFCY-zGQBTc12w4iR7FsIGAEqh4Wl2gooDMo6zbLjqI628ja3r8x9tXLd9HteUX1IXqA-R0pvuxinfOJ-328G7HdX5jfXf3S6v1jYhNy7J5AvrO5dvKa5dHfIUHtwwdlPtinqKbRWeZ08am7RfHO7T7Pby47fF5_n1l09Xiw_X80qijHObWlRC8VpjzYGhtiWUoJdLJKuARAMgK40cqKCKa53iSgGvmZVFOjg_zS4m3WFcbqmuqI_edmbw7db6X8bZ1vyZ6du1WbmdQY2CiTIJvDsIeHc3Uohm24aKus725MZgVFqu4EL-F8S0dESmE_j2L3DjRt-nLRgGyEvF5R46n6DKuxA8NfctI5i952bvuTl6nipeP5z0yB9MTsD7A7CvPMoVRhumtDDN2HWRfsYHUv8mE_BqAjYhOn9PMFEwKQRL-TdTvrHO2JVvg7n9uh8OQIn0_ST_DW8Q06o</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201397368</pqid></control><display><type>article</type><title>Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hey, Jody ; Nielsen, Rasmus</creator><creatorcontrib>Hey, Jody ; Nielsen, Rasmus</creatorcontrib><description>In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0611164104</identifier><identifier>PMID: 17301231</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bayes Theorem ; Biological Sciences ; Datasets ; Density estimation ; Evolution ; Genealogy ; Genealogy and Heraldry ; Genetics, Population - statistics & numerical data ; Markov Chains ; Mathematical analysis ; Mathematical independent variables ; Models, Genetic ; Monte Carlo Method ; Monte Carlo simulation ; Pan troglodytes ; Pan troglodytes - genetics ; Parametric models ; Population genetics ; Population migration ; Population parameters ; Population size ; Simulations</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (8), p.2785-2790</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 20, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c616t-a1737573d81d30218a90908bb1ea70e5f006c8130e4ec388b1e7703d2a64d2a33</citedby><cites>FETCH-LOGICAL-c616t-a1737573d81d30218a90908bb1ea70e5f006c8130e4ec388b1e7703d2a64d2a33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426552$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426552$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17301231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hey, Jody</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><title>Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided.</description><subject>Animals</subject><subject>Bayes Theorem</subject><subject>Biological Sciences</subject><subject>Datasets</subject><subject>Density estimation</subject><subject>Evolution</subject><subject>Genealogy</subject><subject>Genealogy and Heraldry</subject><subject>Genetics, Population - statistics & numerical data</subject><subject>Markov Chains</subject><subject>Mathematical analysis</subject><subject>Mathematical independent variables</subject><subject>Models, Genetic</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Pan troglodytes</subject><subject>Pan troglodytes - genetics</subject><subject>Parametric models</subject><subject>Population genetics</subject><subject>Population migration</subject><subject>Population parameters</subject><subject>Population size</subject><subject>Simulations</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhiMEokvhzAmIOMBp2xk7_silElpRqNSKA_RseZPJbpZsnNrOAv8er7LqFoTExZZnnnk1M6-z7CXCGYLi50NvwxlIRJQFQvEomyGUOJdFCY-zGQBTc12w4iR7FsIGAEqh4Wl2gooDMo6zbLjqI628ja3r8x9tXLd9HteUX1IXqA-R0pvuxinfOJ-328G7HdX5jfXf3S6v1jYhNy7J5AvrO5dvKa5dHfIUHtwwdlPtinqKbRWeZ08am7RfHO7T7Pby47fF5_n1l09Xiw_X80qijHObWlRC8VpjzYGhtiWUoJdLJKuARAMgK40cqKCKa53iSgGvmZVFOjg_zS4m3WFcbqmuqI_edmbw7db6X8bZ1vyZ6du1WbmdQY2CiTIJvDsIeHc3Uohm24aKus725MZgVFqu4EL-F8S0dESmE_j2L3DjRt-nLRgGyEvF5R46n6DKuxA8NfctI5i952bvuTl6nipeP5z0yB9MTsD7A7CvPMoVRhumtDDN2HWRfsYHUv8mE_BqAjYhOn9PMFEwKQRL-TdTvrHO2JVvg7n9uh8OQIn0_ST_DW8Q06o</recordid><startdate>20070220</startdate><enddate>20070220</enddate><creator>Hey, Jody</creator><creator>Nielsen, Rasmus</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070220</creationdate><title>Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics</title><author>Hey, Jody ; Nielsen, Rasmus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c616t-a1737573d81d30218a90908bb1ea70e5f006c8130e4ec388b1e7703d2a64d2a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Bayes Theorem</topic><topic>Biological Sciences</topic><topic>Datasets</topic><topic>Density estimation</topic><topic>Evolution</topic><topic>Genealogy</topic><topic>Genealogy and Heraldry</topic><topic>Genetics, Population - statistics & numerical data</topic><topic>Markov Chains</topic><topic>Mathematical analysis</topic><topic>Mathematical independent variables</topic><topic>Models, Genetic</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Pan troglodytes</topic><topic>Pan troglodytes - genetics</topic><topic>Parametric models</topic><topic>Population genetics</topic><topic>Population migration</topic><topic>Population parameters</topic><topic>Population size</topic><topic>Simulations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hey, Jody</creatorcontrib><creatorcontrib>Nielsen, Rasmus</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hey, Jody</au><au>Nielsen, Rasmus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-20</date><risdate>2007</risdate><volume>104</volume><issue>8</issue><spage>2785</spage><epage>2790</epage><pages>2785-2790</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>In 1988, Felsenstein described a framework for assessing the likelihood of a genetic data set in which all of the possible genealogical histories of the data are considered, each in proportion to their probability. Although not analytically solvable, several approaches, including Markov chain Monte Carlo methods, have been developed to find approximate solutions. Here, we describe an approach in which Markov chain Monte Carlo simulations are used to integrate over the space of genealogies, whereas other parameters are integrated out analytically. The result is an approximation to the full joint posterior density of the model parameters. For many purposes, this function can be treated as a likelihood, thereby permitting likelihood-based analyses, including likelihood ratio tests of nested models. Several examples, including an application to the divergence of chimpanzee subspecies, are provided.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17301231</pmid><doi>10.1073/pnas.0611164104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (8), p.2785-2790 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201397368 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Bayes Theorem Biological Sciences Datasets Density estimation Evolution Genealogy Genealogy and Heraldry Genetics, Population - statistics & numerical data Markov Chains Mathematical analysis Mathematical independent variables Models, Genetic Monte Carlo Method Monte Carlo simulation Pan troglodytes Pan troglodytes - genetics Parametric models Population genetics Population migration Population parameters Population size Simulations |
title | Integration within the Felsenstein equation for improved Markov chain Monte Carlo methods in population genetics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T08%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20within%20the%20Felsenstein%20equation%20for%20improved%20Markov%20chain%20Monte%20Carlo%20methods%20in%20population%20genetics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hey,%20Jody&rft.date=2007-02-20&rft.volume=104&rft.issue=8&rft.spage=2785&rft.epage=2790&rft.pages=2785-2790&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0611164104&rft_dat=%3Cjstor_proqu%3E25426552%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201397368&rft_id=info:pmid/17301231&rft_jstor_id=25426552&rfr_iscdi=true |