Anisotropic rheology and directional mechanotransduction in vascular endothelial cells

Adherent cells remodel their cytoskeleton, including its directionality, in response to directional mechanical stimuli with consequent redistribution of intracellular forces and modulation of cell function. We analyzed the temporal and spatial changes in magnitude and directionality of the cytoplasm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-10, Vol.105 (40), p.15411-15416
Hauptverfasser: del Álamo, Juan C, Norwich, Gerard N, Li, Yi-shuan Julie, Lasheras, Juan C, Chien, Shu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15416
container_issue 40
container_start_page 15411
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator del Álamo, Juan C
Norwich, Gerard N
Li, Yi-shuan Julie
Lasheras, Juan C
Chien, Shu
description Adherent cells remodel their cytoskeleton, including its directionality, in response to directional mechanical stimuli with consequent redistribution of intracellular forces and modulation of cell function. We analyzed the temporal and spatial changes in magnitude and directionality of the cytoplasmic creep compliance (Γ) in confluent cultures of bovine aortic endothelial cells subjected to continuous laminar flow shear stresses. We extended particle tracking microrheology to determine at each point in the cytoplasm the principal directions along which Γ is maximal and minimal. Under static condition, the cells have polygonal shapes without specific alignment. Although Γ of each cell exhibits directionality with varying principal directions, Γ averaged over the whole cell population is isotropic. After continuous laminar flow shear stresses, all cells gradually elongate and the directions of maximal and minimal Γ become, respectively, parallel and perpendicular to flow direction. This mechanical alignment is accompanied by a transition of the cytoplasm to be more fluid-like along the flow direction and more solid-like along the perpendicular direction; at the same time Γ increases at the downstream part of the cells. The resulting directional anisotropy and spatial inhomogeneity of cytoplasmic rheology may play an important role in mechanotransduction in adherent cells by providing a means to sense the direction of mechanical stimuli.
doi_str_mv 10.1073/pnas.0804573105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201393593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25464425</jstor_id><sourcerecordid>25464425</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-56643b79f06219898ac5d363a4e5c64883d5fc725e2c645e983b4618672240d23</originalsourceid><addsrcrecordid>eNqFkUtvEzEUhS0EoiGwZgWMWCCxmPb6OfYGqap4SZVYQNlajseTOHLsYM9U9N_jIVEDbFhYln2_e3yuD0LPMZxj6OjFPppyDhIY7ygG_gAtMCjcCqbgIVoAkK6VjLAz9KSULQAoLuExOsNSMhCKLdD3y-hLGnPae9vkjUshre8aE_um99nZ0adoQrNzdmNixUws_fT7tvGxuTXFTsHkxsU-jRsXfGWtC6E8RY8GE4p7dtyX6ObD-29Xn9rrLx8_X11et5ZLNbZcCEZXnRpAEKykksbyngpqmONWMClpzwfbEe5IPXKnJF0xgaXoCGHQE7pE7w66-2m1c711sXoMep_9zuQ7nYzXf1ei3-h1utWECwpVboneHAVy-jG5MuqdL_MIJro0FS1UdcjrWqLX_4DbNOX6OUUTwFRRrmiFLg6QzamU7IZ7Jxj0HJieA9OnwGrHyz8HOPHHhCrQHIG58yTHNauSnGFckbf_QfQwhTC6n2NlXxzYbRlTvocJZ4IxMvt5dagPJmmzzr7om6_zgFCFOlFf-wX8zr21</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201393593</pqid></control><display><type>article</type><title>Anisotropic rheology and directional mechanotransduction in vascular endothelial cells</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>del Álamo, Juan C ; Norwich, Gerard N ; Li, Yi-shuan Julie ; Lasheras, Juan C ; Chien, Shu</creator><creatorcontrib>del Álamo, Juan C ; Norwich, Gerard N ; Li, Yi-shuan Julie ; Lasheras, Juan C ; Chien, Shu</creatorcontrib><description>Adherent cells remodel their cytoskeleton, including its directionality, in response to directional mechanical stimuli with consequent redistribution of intracellular forces and modulation of cell function. We analyzed the temporal and spatial changes in magnitude and directionality of the cytoplasmic creep compliance (Γ) in confluent cultures of bovine aortic endothelial cells subjected to continuous laminar flow shear stresses. We extended particle tracking microrheology to determine at each point in the cytoplasm the principal directions along which Γ is maximal and minimal. Under static condition, the cells have polygonal shapes without specific alignment. Although Γ of each cell exhibits directionality with varying principal directions, Γ averaged over the whole cell population is isotropic. After continuous laminar flow shear stresses, all cells gradually elongate and the directions of maximal and minimal Γ become, respectively, parallel and perpendicular to flow direction. This mechanical alignment is accompanied by a transition of the cytoplasm to be more fluid-like along the flow direction and more solid-like along the perpendicular direction; at the same time Γ increases at the downstream part of the cells. The resulting directional anisotropy and spatial inhomogeneity of cytoplasmic rheology may play an important role in mechanotransduction in adherent cells by providing a means to sense the direction of mechanical stimuli.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0804573105</identifier><identifier>PMID: 18840694</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Anisotropy ; Biological Sciences ; Cattle ; Cell Shape ; Cells ; Cells, Cultured ; Cytoplasm ; Cytoplasm - metabolism ; Cytoskeleton ; Endothelial cells ; Endothelial Cells - cytology ; Endothelial Cells - physiology ; Endothelium, Vascular - cytology ; Endothelium, Vascular - physiology ; Epithelial cells ; Mechanotransduction, Cellular - physiology ; Mitochondria ; Mitochondria - metabolism ; Mitochondria - ultrastructure ; Renovations ; Rheology ; Shear Strength ; Shear stress ; Statics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-10, Vol.105 (40), p.15411-15416</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 7, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-56643b79f06219898ac5d363a4e5c64883d5fc725e2c645e983b4618672240d23</citedby><cites>FETCH-LOGICAL-c589t-56643b79f06219898ac5d363a4e5c64883d5fc725e2c645e983b4618672240d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/40.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25464425$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25464425$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18840694$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>del Álamo, Juan C</creatorcontrib><creatorcontrib>Norwich, Gerard N</creatorcontrib><creatorcontrib>Li, Yi-shuan Julie</creatorcontrib><creatorcontrib>Lasheras, Juan C</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><title>Anisotropic rheology and directional mechanotransduction in vascular endothelial cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Adherent cells remodel their cytoskeleton, including its directionality, in response to directional mechanical stimuli with consequent redistribution of intracellular forces and modulation of cell function. We analyzed the temporal and spatial changes in magnitude and directionality of the cytoplasmic creep compliance (Γ) in confluent cultures of bovine aortic endothelial cells subjected to continuous laminar flow shear stresses. We extended particle tracking microrheology to determine at each point in the cytoplasm the principal directions along which Γ is maximal and minimal. Under static condition, the cells have polygonal shapes without specific alignment. Although Γ of each cell exhibits directionality with varying principal directions, Γ averaged over the whole cell population is isotropic. After continuous laminar flow shear stresses, all cells gradually elongate and the directions of maximal and minimal Γ become, respectively, parallel and perpendicular to flow direction. This mechanical alignment is accompanied by a transition of the cytoplasm to be more fluid-like along the flow direction and more solid-like along the perpendicular direction; at the same time Γ increases at the downstream part of the cells. The resulting directional anisotropy and spatial inhomogeneity of cytoplasmic rheology may play an important role in mechanotransduction in adherent cells by providing a means to sense the direction of mechanical stimuli.</description><subject>Animals</subject><subject>Anisotropy</subject><subject>Biological Sciences</subject><subject>Cattle</subject><subject>Cell Shape</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Cytoplasm</subject><subject>Cytoplasm - metabolism</subject><subject>Cytoskeleton</subject><subject>Endothelial cells</subject><subject>Endothelial Cells - cytology</subject><subject>Endothelial Cells - physiology</subject><subject>Endothelium, Vascular - cytology</subject><subject>Endothelium, Vascular - physiology</subject><subject>Epithelial cells</subject><subject>Mechanotransduction, Cellular - physiology</subject><subject>Mitochondria</subject><subject>Mitochondria - metabolism</subject><subject>Mitochondria - ultrastructure</subject><subject>Renovations</subject><subject>Rheology</subject><subject>Shear Strength</subject><subject>Shear stress</subject><subject>Statics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtvEzEUhS0EoiGwZgWMWCCxmPb6OfYGqap4SZVYQNlajseTOHLsYM9U9N_jIVEDbFhYln2_e3yuD0LPMZxj6OjFPppyDhIY7ygG_gAtMCjcCqbgIVoAkK6VjLAz9KSULQAoLuExOsNSMhCKLdD3y-hLGnPae9vkjUshre8aE_um99nZ0adoQrNzdmNixUws_fT7tvGxuTXFTsHkxsU-jRsXfGWtC6E8RY8GE4p7dtyX6ObD-29Xn9rrLx8_X11et5ZLNbZcCEZXnRpAEKykksbyngpqmONWMClpzwfbEe5IPXKnJF0xgaXoCGHQE7pE7w66-2m1c711sXoMep_9zuQ7nYzXf1ei3-h1utWECwpVboneHAVy-jG5MuqdL_MIJro0FS1UdcjrWqLX_4DbNOX6OUUTwFRRrmiFLg6QzamU7IZ7Jxj0HJieA9OnwGrHyz8HOPHHhCrQHIG58yTHNauSnGFckbf_QfQwhTC6n2NlXxzYbRlTvocJZ4IxMvt5dagPJmmzzr7om6_zgFCFOlFf-wX8zr21</recordid><startdate>20081007</startdate><enddate>20081007</enddate><creator>del Álamo, Juan C</creator><creator>Norwich, Gerard N</creator><creator>Li, Yi-shuan Julie</creator><creator>Lasheras, Juan C</creator><creator>Chien, Shu</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081007</creationdate><title>Anisotropic rheology and directional mechanotransduction in vascular endothelial cells</title><author>del Álamo, Juan C ; Norwich, Gerard N ; Li, Yi-shuan Julie ; Lasheras, Juan C ; Chien, Shu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-56643b79f06219898ac5d363a4e5c64883d5fc725e2c645e983b4618672240d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Anisotropy</topic><topic>Biological Sciences</topic><topic>Cattle</topic><topic>Cell Shape</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Cytoplasm</topic><topic>Cytoplasm - metabolism</topic><topic>Cytoskeleton</topic><topic>Endothelial cells</topic><topic>Endothelial Cells - cytology</topic><topic>Endothelial Cells - physiology</topic><topic>Endothelium, Vascular - cytology</topic><topic>Endothelium, Vascular - physiology</topic><topic>Epithelial cells</topic><topic>Mechanotransduction, Cellular - physiology</topic><topic>Mitochondria</topic><topic>Mitochondria - metabolism</topic><topic>Mitochondria - ultrastructure</topic><topic>Renovations</topic><topic>Rheology</topic><topic>Shear Strength</topic><topic>Shear stress</topic><topic>Statics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>del Álamo, Juan C</creatorcontrib><creatorcontrib>Norwich, Gerard N</creatorcontrib><creatorcontrib>Li, Yi-shuan Julie</creatorcontrib><creatorcontrib>Lasheras, Juan C</creatorcontrib><creatorcontrib>Chien, Shu</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>del Álamo, Juan C</au><au>Norwich, Gerard N</au><au>Li, Yi-shuan Julie</au><au>Lasheras, Juan C</au><au>Chien, Shu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropic rheology and directional mechanotransduction in vascular endothelial cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-10-07</date><risdate>2008</risdate><volume>105</volume><issue>40</issue><spage>15411</spage><epage>15416</epage><pages>15411-15416</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Adherent cells remodel their cytoskeleton, including its directionality, in response to directional mechanical stimuli with consequent redistribution of intracellular forces and modulation of cell function. We analyzed the temporal and spatial changes in magnitude and directionality of the cytoplasmic creep compliance (Γ) in confluent cultures of bovine aortic endothelial cells subjected to continuous laminar flow shear stresses. We extended particle tracking microrheology to determine at each point in the cytoplasm the principal directions along which Γ is maximal and minimal. Under static condition, the cells have polygonal shapes without specific alignment. Although Γ of each cell exhibits directionality with varying principal directions, Γ averaged over the whole cell population is isotropic. After continuous laminar flow shear stresses, all cells gradually elongate and the directions of maximal and minimal Γ become, respectively, parallel and perpendicular to flow direction. This mechanical alignment is accompanied by a transition of the cytoplasm to be more fluid-like along the flow direction and more solid-like along the perpendicular direction; at the same time Γ increases at the downstream part of the cells. The resulting directional anisotropy and spatial inhomogeneity of cytoplasmic rheology may play an important role in mechanotransduction in adherent cells by providing a means to sense the direction of mechanical stimuli.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18840694</pmid><doi>10.1073/pnas.0804573105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-10, Vol.105 (40), p.15411-15416
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201393593
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Anisotropy
Biological Sciences
Cattle
Cell Shape
Cells
Cells, Cultured
Cytoplasm
Cytoplasm - metabolism
Cytoskeleton
Endothelial cells
Endothelial Cells - cytology
Endothelial Cells - physiology
Endothelium, Vascular - cytology
Endothelium, Vascular - physiology
Epithelial cells
Mechanotransduction, Cellular - physiology
Mitochondria
Mitochondria - metabolism
Mitochondria - ultrastructure
Renovations
Rheology
Shear Strength
Shear stress
Statics
title Anisotropic rheology and directional mechanotransduction in vascular endothelial cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T03%3A01%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropic%20rheology%20and%20directional%20mechanotransduction%20in%20vascular%20endothelial%20cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=del%20%C3%81lamo,%20Juan%20C&rft.date=2008-10-07&rft.volume=105&rft.issue=40&rft.spage=15411&rft.epage=15416&rft.pages=15411-15416&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0804573105&rft_dat=%3Cjstor_proqu%3E25464425%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201393593&rft_id=info:pmid/18840694&rft_jstor_id=25464425&rfr_iscdi=true