narrow escape problem for diffusion in cellular microdomains

The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-10, Vol.104 (41), p.16098-16103
Hauptverfasser: Schuss, Z, Singer, A, Holcman, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16103
container_issue 41
container_start_page 16098
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Schuss, Z
Singer, A
Holcman, D
description The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this explicit dependence for a model of a Brownian particle (ion, molecule, or protein) confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. We call the calculation of the mean escape time the narrow escape problem. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem. Here, we present asymptotic formulas for the mean escape time in several cases, including regular domains in two and three dimensions and in some singular domains in two dimensions. The mean escape time comes up in many applications, because it represents the mean time it takes for a molecule to hit a target binding site. We present several applications in cellular biology: calcium decay in dendritic spines, a Markov model of multicomponent chemical reactions in microdomains, dynamics of receptor diffusion on the surface of neurons, and vesicle trafficking inside a cell.
doi_str_mv 10.1073/pnas.0706599104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201393263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25449275</jstor_id><sourcerecordid>25449275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-283bfb312adbc60e5958b8cc5098e23afb462e44ecb20e841391bf1ba74530a83</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIOCBxSDv-iGNLqFJVAUWqxAF6tuysXbxK7GAntPz3OOyqC73saQ7zm6d57yH0EsMJhpaejkHnE2iBN1JiYI_QCoPENWcSHqMVAGlrwQg7Qs9y3gCAbAQ8RUe4lYAJ0BX6EHRK8bayudOjrcYUTW-HysVUrb1zc_YxVD5Une37udepGnyX4joO2of8HD1xus_2xW4eo-tPH79fXNZXXz9_uTi_qjvO2qkmghpnKCZ6bToOtilfGNF1DUhhCdXOME4sY7YzBKxgmEpsHDa6ZQ0FLegxOtvqjrMZ7LqzYUq6V2Pyg06_VdRe_b8J_oe6ib8UlrIkQYvAu51Aij9nmyc1-LxY0sHGOSsuWMlG8oNgyQxjzhfFtw_ATZxTKCkUphig5DC0tNEW6HQLlVxzTtbd-8KglpLVUrLal1wuXv8bx57ftVqAagcsl3s5phhWmJfYC_L-AKLc3PeTvZsK-2rLbvIU0z1MGsYkaZuyf7PdOx2Vvkk-q-tvfw2CKD-Jhv4Bv5jNfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201309587</pqid></control><display><type>article</type><title>narrow escape problem for diffusion in cellular microdomains</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Schuss, Z ; Singer, A ; Holcman, D</creator><creatorcontrib>Schuss, Z ; Singer, A ; Holcman, D</creatorcontrib><description>The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this explicit dependence for a model of a Brownian particle (ion, molecule, or protein) confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. We call the calculation of the mean escape time the narrow escape problem. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem. Here, we present asymptotic formulas for the mean escape time in several cases, including regular domains in two and three dimensions and in some singular domains in two dimensions. The mean escape time comes up in many applications, because it represents the mean time it takes for a molecule to hit a target binding site. We present several applications in cellular biology: calcium decay in dendritic spines, a Markov model of multicomponent chemical reactions in microdomains, dynamics of receptor diffusion on the surface of neurons, and vesicle trafficking inside a cell.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0706599104</identifier><identifier>PMID: 17901203</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biophysical Phenomena ; Biophysics ; Calcium ; Calcium - metabolism ; Cells ; Cellular biology ; Chemical reactions ; Cytoplasm - metabolism ; Dendrites - metabolism ; Dendritic spines ; Diffusion ; Geometry ; Ions ; Markov analysis ; Markov Chains ; Membrane Microdomains - metabolism ; Models, Biological ; Models, Neurological ; Molecules ; Neck ; Neurons ; Neurons - metabolism ; Neuroscience ; Physical Sciences ; Receptors ; Receptors, Cell Surface - metabolism ; Subcellular Fractions - metabolism ; Synapses - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-10, Vol.104 (41), p.16098-16103</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 9, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-283bfb312adbc60e5958b8cc5098e23afb462e44ecb20e841391bf1ba74530a83</citedby><cites>FETCH-LOGICAL-c647t-283bfb312adbc60e5958b8cc5098e23afb462e44ecb20e841391bf1ba74530a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/41.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25449275$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25449275$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17901203$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schuss, Z</creatorcontrib><creatorcontrib>Singer, A</creatorcontrib><creatorcontrib>Holcman, D</creatorcontrib><title>narrow escape problem for diffusion in cellular microdomains</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this explicit dependence for a model of a Brownian particle (ion, molecule, or protein) confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. We call the calculation of the mean escape time the narrow escape problem. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem. Here, we present asymptotic formulas for the mean escape time in several cases, including regular domains in two and three dimensions and in some singular domains in two dimensions. The mean escape time comes up in many applications, because it represents the mean time it takes for a molecule to hit a target binding site. We present several applications in cellular biology: calcium decay in dendritic spines, a Markov model of multicomponent chemical reactions in microdomains, dynamics of receptor diffusion on the surface of neurons, and vesicle trafficking inside a cell.</description><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Calcium</subject><subject>Calcium - metabolism</subject><subject>Cells</subject><subject>Cellular biology</subject><subject>Chemical reactions</subject><subject>Cytoplasm - metabolism</subject><subject>Dendrites - metabolism</subject><subject>Dendritic spines</subject><subject>Diffusion</subject><subject>Geometry</subject><subject>Ions</subject><subject>Markov analysis</subject><subject>Markov Chains</subject><subject>Membrane Microdomains - metabolism</subject><subject>Models, Biological</subject><subject>Models, Neurological</subject><subject>Molecules</subject><subject>Neck</subject><subject>Neurons</subject><subject>Neurons - metabolism</subject><subject>Neuroscience</subject><subject>Physical Sciences</subject><subject>Receptors</subject><subject>Receptors, Cell Surface - metabolism</subject><subject>Subcellular Fractions - metabolism</subject><subject>Synapses - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAmIOCBxSDv-iGNLqFJVAUWqxAF6tuysXbxK7GAntPz3OOyqC73saQ7zm6d57yH0EsMJhpaejkHnE2iBN1JiYI_QCoPENWcSHqMVAGlrwQg7Qs9y3gCAbAQ8RUe4lYAJ0BX6EHRK8bayudOjrcYUTW-HysVUrb1zc_YxVD5Une37udepGnyX4joO2of8HD1xus_2xW4eo-tPH79fXNZXXz9_uTi_qjvO2qkmghpnKCZ6bToOtilfGNF1DUhhCdXOME4sY7YzBKxgmEpsHDa6ZQ0FLegxOtvqjrMZ7LqzYUq6V2Pyg06_VdRe_b8J_oe6ib8UlrIkQYvAu51Aij9nmyc1-LxY0sHGOSsuWMlG8oNgyQxjzhfFtw_ATZxTKCkUphig5DC0tNEW6HQLlVxzTtbd-8KglpLVUrLal1wuXv8bx57ftVqAagcsl3s5phhWmJfYC_L-AKLc3PeTvZsK-2rLbvIU0z1MGsYkaZuyf7PdOx2Vvkk-q-tvfw2CKD-Jhv4Bv5jNfQ</recordid><startdate>20071009</startdate><enddate>20071009</enddate><creator>Schuss, Z</creator><creator>Singer, A</creator><creator>Holcman, D</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071009</creationdate><title>narrow escape problem for diffusion in cellular microdomains</title><author>Schuss, Z ; Singer, A ; Holcman, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-283bfb312adbc60e5958b8cc5098e23afb462e44ecb20e841391bf1ba74530a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Calcium</topic><topic>Calcium - metabolism</topic><topic>Cells</topic><topic>Cellular biology</topic><topic>Chemical reactions</topic><topic>Cytoplasm - metabolism</topic><topic>Dendrites - metabolism</topic><topic>Dendritic spines</topic><topic>Diffusion</topic><topic>Geometry</topic><topic>Ions</topic><topic>Markov analysis</topic><topic>Markov Chains</topic><topic>Membrane Microdomains - metabolism</topic><topic>Models, Biological</topic><topic>Models, Neurological</topic><topic>Molecules</topic><topic>Neck</topic><topic>Neurons</topic><topic>Neurons - metabolism</topic><topic>Neuroscience</topic><topic>Physical Sciences</topic><topic>Receptors</topic><topic>Receptors, Cell Surface - metabolism</topic><topic>Subcellular Fractions - metabolism</topic><topic>Synapses - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schuss, Z</creatorcontrib><creatorcontrib>Singer, A</creatorcontrib><creatorcontrib>Holcman, D</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schuss, Z</au><au>Singer, A</au><au>Holcman, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>narrow escape problem for diffusion in cellular microdomains</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-10-09</date><risdate>2007</risdate><volume>104</volume><issue>41</issue><spage>16098</spage><epage>16103</epage><pages>16098-16103</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The study of the diffusive motion of ions or molecules in confined biological microdomains requires the derivation of the explicit dependence of quantities, such as the decay rate of the population or the forward chemical reaction rate constant on the geometry of the domain. Here, we obtain this explicit dependence for a model of a Brownian particle (ion, molecule, or protein) confined to a bounded domain (a compartment or a cell) by a reflecting boundary, except for a small window through which it can escape. We call the calculation of the mean escape time the narrow escape problem. This time diverges as the window shrinks, thus rendering the calculation a singular perturbation problem. Here, we present asymptotic formulas for the mean escape time in several cases, including regular domains in two and three dimensions and in some singular domains in two dimensions. The mean escape time comes up in many applications, because it represents the mean time it takes for a molecule to hit a target binding site. We present several applications in cellular biology: calcium decay in dendritic spines, a Markov model of multicomponent chemical reactions in microdomains, dynamics of receptor diffusion on the surface of neurons, and vesicle trafficking inside a cell.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17901203</pmid><doi>10.1073/pnas.0706599104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-10, Vol.104 (41), p.16098-16103
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201393263
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Biophysical Phenomena
Biophysics
Calcium
Calcium - metabolism
Cells
Cellular biology
Chemical reactions
Cytoplasm - metabolism
Dendrites - metabolism
Dendritic spines
Diffusion
Geometry
Ions
Markov analysis
Markov Chains
Membrane Microdomains - metabolism
Models, Biological
Models, Neurological
Molecules
Neck
Neurons
Neurons - metabolism
Neuroscience
Physical Sciences
Receptors
Receptors, Cell Surface - metabolism
Subcellular Fractions - metabolism
Synapses - metabolism
title narrow escape problem for diffusion in cellular microdomains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T00%3A37%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=narrow%20escape%20problem%20for%20diffusion%20in%20cellular%20microdomains&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schuss,%20Z&rft.date=2007-10-09&rft.volume=104&rft.issue=41&rft.spage=16098&rft.epage=16103&rft.pages=16098-16103&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0706599104&rft_dat=%3Cjstor_proqu%3E25449275%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201309587&rft_id=info:pmid/17901203&rft_jstor_id=25449275&rfr_iscdi=true