Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation
During frog and fish development, convergent extension movements transform the spherical gastrula into an elongated neurula. Such transformation of a ball- into a worm-shaped embryo is an ancestral and fundamental feature of bilaterian development, yet this is modified or absent in the protostome mo...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-02, Vol.104 (8), p.2727-2732 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2732 |
---|---|
container_issue | 8 |
container_start_page | 2727 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Steinmetz, Patrick R.H Zelada-Gonzáles, Fabiola Burgtorf, Carola Wittbrodt, Joachim Arendt, Detlev |
description | During frog and fish development, convergent extension movements transform the spherical gastrula into an elongated neurula. Such transformation of a ball- into a worm-shaped embryo is an ancestral and fundamental feature of bilaterian development, yet this is modified or absent in the protostome model organisms Caenorhabditis or DROSOPHILA: In the polychaete annelid Platynereis dumerilii, early embryonic and larval stages resemble a sphere that subsequently elongates into worm shape. Cellular and molecular mechanisms of polychaete body elongation are yet unknown. Our in vivo time-lapse analysis of Platynereis axis elongation reveals that the polychaete neuroectoderm converges and extends by mediolateral cell intercalation. This occurs on both sides of the neural midline, the line of fusion of the slit-like blastopore. Convergent extension moves apart mouth and anus that are both derived from the blastopore. Tissue elongation is actin-dependent but microtubule-independent. Dependence on JNK activity and spatially restricted expression of strabismus indicates involvement of the noncanonical Wnt pathway. We detect a morphogenetic boundary between the converging and extending trunk neuroectoderm and the anterior otx-expressing head neuroectoderm that does not elongate. Our comparative analysis uncovers striking similarities but also differences between convergent extension in the polychaete and in the frog (the classical vertebrate model for convergent extension). Based on these findings, we propose that convergent extension movements of the trunk neuroectoderm represent an ancestral feature of bilaterian development that triggered the separation of mouth and anus along the elongating trunk. |
doi_str_mv | 10.1073/pnas.0606589104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201382928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426542</jstor_id><sourcerecordid>25426542</sourcerecordid><originalsourceid>FETCH-LOGICAL-c480t-f8b0f5e420a056e756de705a2ea36ec0b614cb628d4142bc3e7691df550d108e3</originalsourceid><addsrcrecordid>eNqFkc2LFDEQxYMo7rh69qQ2HvQ0u5V0vvoiyOIXLCjo4jGk09WzPfYkY5JenP_eNDPsrB70EEJSv3rUq0fIUwpnFFR9vvU2nYEEKXRDgd8jCwoNXUrewH2yAGBqqTnjJ-RRSmsAaISGh-SEqhoo43xBvn8J485dW8xY5Tj5H5XHKQZ0OXQYN5UL_gbjClNlfVfhr4y-S1W7qzbYDWG0GaMdK4fjWA2-PJwtf0Pwj8mD3o4JnxzuU3L1_t23i4_Ly88fPl28vVw6riEve91CL5AzsCAkKiE7VCAsQ1tLdNBKyl0rme445ax1NSrZ0K4XAjoKGutT8mavu53aMpJDn8tAZhuHjY07E-xg_qz44dqswo2hmgrGmyLw6iAQw88JUzabIc1-rMcwJaOASaXh_yAtu5Wq1gV8-Re4DlP0ZQuGAa01a9gMne8hF0NKEfvbkSmYOVozR2uO0ZaO53edHvlDlneAufMox402TDFVgNf_BEw_jWMuGRfy2Z5cpxziLcoEZ7KcUn-xr_c2GLuKQzJXX2dzAEoAaFn_BjY6y7g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201382928</pqid></control><display><type>article</type><title>Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Steinmetz, Patrick R.H ; Zelada-Gonzáles, Fabiola ; Burgtorf, Carola ; Wittbrodt, Joachim ; Arendt, Detlev</creator><creatorcontrib>Steinmetz, Patrick R.H ; Zelada-Gonzáles, Fabiola ; Burgtorf, Carola ; Wittbrodt, Joachim ; Arendt, Detlev</creatorcontrib><description>During frog and fish development, convergent extension movements transform the spherical gastrula into an elongated neurula. Such transformation of a ball- into a worm-shaped embryo is an ancestral and fundamental feature of bilaterian development, yet this is modified or absent in the protostome model organisms Caenorhabditis or DROSOPHILA: In the polychaete annelid Platynereis dumerilii, early embryonic and larval stages resemble a sphere that subsequently elongates into worm shape. Cellular and molecular mechanisms of polychaete body elongation are yet unknown. Our in vivo time-lapse analysis of Platynereis axis elongation reveals that the polychaete neuroectoderm converges and extends by mediolateral cell intercalation. This occurs on both sides of the neural midline, the line of fusion of the slit-like blastopore. Convergent extension moves apart mouth and anus that are both derived from the blastopore. Tissue elongation is actin-dependent but microtubule-independent. Dependence on JNK activity and spatially restricted expression of strabismus indicates involvement of the noncanonical Wnt pathway. We detect a morphogenetic boundary between the converging and extending trunk neuroectoderm and the anterior otx-expressing head neuroectoderm that does not elongate. Our comparative analysis uncovers striking similarities but also differences between convergent extension in the polychaete and in the frog (the classical vertebrate model for convergent extension). Based on these findings, we propose that convergent extension movements of the trunk neuroectoderm represent an ancestral feature of bilaterian development that triggered the separation of mouth and anus along the elongating trunk.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0606589104</identifier><identifier>PMID: 17301244</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Annelida ; Anus ; Biological Evolution ; Biological Sciences ; Body Patterning - drug effects ; Caenorhabditis ; Cell Division - drug effects ; Cell tracking ; Cells ; Drosophila ; Ectoderm - cytology ; Ectoderm - drug effects ; Embryo, Nonmammalian - cytology ; Embryo, Nonmammalian - drug effects ; Embryology ; Embryos ; Enzyme Inhibitors - pharmacology ; Fish ; Frogs ; JNK Mitogen-Activated Protein Kinases - antagonists & inhibitors ; Larva - drug effects ; Larvae ; Marine ; Membrane Proteins - metabolism ; Models, Biological ; Molecular biology ; Molecular Sequence Data ; Morphogenesis - drug effects ; Neurons ; Otx Transcription Factors - metabolism ; Platynereis ; Platynereis dumerilii ; Polychaeta - cytology ; Polychaeta - drug effects ; Polychaeta - embryology ; Sea water ; Vertebrates ; Worms</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (8), p.2727-2732</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 20, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c480t-f8b0f5e420a056e756de705a2ea36ec0b614cb628d4142bc3e7691df550d108e3</citedby><cites>FETCH-LOGICAL-c480t-f8b0f5e420a056e756de705a2ea36ec0b614cb628d4142bc3e7691df550d108e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/8.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426542$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426542$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17301244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Steinmetz, Patrick R.H</creatorcontrib><creatorcontrib>Zelada-Gonzáles, Fabiola</creatorcontrib><creatorcontrib>Burgtorf, Carola</creatorcontrib><creatorcontrib>Wittbrodt, Joachim</creatorcontrib><creatorcontrib>Arendt, Detlev</creatorcontrib><title>Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>During frog and fish development, convergent extension movements transform the spherical gastrula into an elongated neurula. Such transformation of a ball- into a worm-shaped embryo is an ancestral and fundamental feature of bilaterian development, yet this is modified or absent in the protostome model organisms Caenorhabditis or DROSOPHILA: In the polychaete annelid Platynereis dumerilii, early embryonic and larval stages resemble a sphere that subsequently elongates into worm shape. Cellular and molecular mechanisms of polychaete body elongation are yet unknown. Our in vivo time-lapse analysis of Platynereis axis elongation reveals that the polychaete neuroectoderm converges and extends by mediolateral cell intercalation. This occurs on both sides of the neural midline, the line of fusion of the slit-like blastopore. Convergent extension moves apart mouth and anus that are both derived from the blastopore. Tissue elongation is actin-dependent but microtubule-independent. Dependence on JNK activity and spatially restricted expression of strabismus indicates involvement of the noncanonical Wnt pathway. We detect a morphogenetic boundary between the converging and extending trunk neuroectoderm and the anterior otx-expressing head neuroectoderm that does not elongate. Our comparative analysis uncovers striking similarities but also differences between convergent extension in the polychaete and in the frog (the classical vertebrate model for convergent extension). Based on these findings, we propose that convergent extension movements of the trunk neuroectoderm represent an ancestral feature of bilaterian development that triggered the separation of mouth and anus along the elongating trunk.</description><subject>Animals</subject><subject>Annelida</subject><subject>Anus</subject><subject>Biological Evolution</subject><subject>Biological Sciences</subject><subject>Body Patterning - drug effects</subject><subject>Caenorhabditis</subject><subject>Cell Division - drug effects</subject><subject>Cell tracking</subject><subject>Cells</subject><subject>Drosophila</subject><subject>Ectoderm - cytology</subject><subject>Ectoderm - drug effects</subject><subject>Embryo, Nonmammalian - cytology</subject><subject>Embryo, Nonmammalian - drug effects</subject><subject>Embryology</subject><subject>Embryos</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Fish</subject><subject>Frogs</subject><subject>JNK Mitogen-Activated Protein Kinases - antagonists & inhibitors</subject><subject>Larva - drug effects</subject><subject>Larvae</subject><subject>Marine</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Biological</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Morphogenesis - drug effects</subject><subject>Neurons</subject><subject>Otx Transcription Factors - metabolism</subject><subject>Platynereis</subject><subject>Platynereis dumerilii</subject><subject>Polychaeta - cytology</subject><subject>Polychaeta - drug effects</subject><subject>Polychaeta - embryology</subject><subject>Sea water</subject><subject>Vertebrates</subject><subject>Worms</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc2LFDEQxYMo7rh69qQ2HvQ0u5V0vvoiyOIXLCjo4jGk09WzPfYkY5JenP_eNDPsrB70EEJSv3rUq0fIUwpnFFR9vvU2nYEEKXRDgd8jCwoNXUrewH2yAGBqqTnjJ-RRSmsAaISGh-SEqhoo43xBvn8J485dW8xY5Tj5H5XHKQZ0OXQYN5UL_gbjClNlfVfhr4y-S1W7qzbYDWG0GaMdK4fjWA2-PJwtf0Pwj8mD3o4JnxzuU3L1_t23i4_Ly88fPl28vVw6riEve91CL5AzsCAkKiE7VCAsQ1tLdNBKyl0rme445ax1NSrZ0K4XAjoKGutT8mavu53aMpJDn8tAZhuHjY07E-xg_qz44dqswo2hmgrGmyLw6iAQw88JUzabIc1-rMcwJaOASaXh_yAtu5Wq1gV8-Re4DlP0ZQuGAa01a9gMne8hF0NKEfvbkSmYOVozR2uO0ZaO53edHvlDlneAufMox402TDFVgNf_BEw_jWMuGRfy2Z5cpxziLcoEZ7KcUn-xr_c2GLuKQzJXX2dzAEoAaFn_BjY6y7g</recordid><startdate>20070220</startdate><enddate>20070220</enddate><creator>Steinmetz, Patrick R.H</creator><creator>Zelada-Gonzáles, Fabiola</creator><creator>Burgtorf, Carola</creator><creator>Wittbrodt, Joachim</creator><creator>Arendt, Detlev</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070220</creationdate><title>Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation</title><author>Steinmetz, Patrick R.H ; Zelada-Gonzáles, Fabiola ; Burgtorf, Carola ; Wittbrodt, Joachim ; Arendt, Detlev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c480t-f8b0f5e420a056e756de705a2ea36ec0b614cb628d4142bc3e7691df550d108e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animals</topic><topic>Annelida</topic><topic>Anus</topic><topic>Biological Evolution</topic><topic>Biological Sciences</topic><topic>Body Patterning - drug effects</topic><topic>Caenorhabditis</topic><topic>Cell Division - drug effects</topic><topic>Cell tracking</topic><topic>Cells</topic><topic>Drosophila</topic><topic>Ectoderm - cytology</topic><topic>Ectoderm - drug effects</topic><topic>Embryo, Nonmammalian - cytology</topic><topic>Embryo, Nonmammalian - drug effects</topic><topic>Embryology</topic><topic>Embryos</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Fish</topic><topic>Frogs</topic><topic>JNK Mitogen-Activated Protein Kinases - antagonists & inhibitors</topic><topic>Larva - drug effects</topic><topic>Larvae</topic><topic>Marine</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Biological</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Morphogenesis - drug effects</topic><topic>Neurons</topic><topic>Otx Transcription Factors - metabolism</topic><topic>Platynereis</topic><topic>Platynereis dumerilii</topic><topic>Polychaeta - cytology</topic><topic>Polychaeta - drug effects</topic><topic>Polychaeta - embryology</topic><topic>Sea water</topic><topic>Vertebrates</topic><topic>Worms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Steinmetz, Patrick R.H</creatorcontrib><creatorcontrib>Zelada-Gonzáles, Fabiola</creatorcontrib><creatorcontrib>Burgtorf, Carola</creatorcontrib><creatorcontrib>Wittbrodt, Joachim</creatorcontrib><creatorcontrib>Arendt, Detlev</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Steinmetz, Patrick R.H</au><au>Zelada-Gonzáles, Fabiola</au><au>Burgtorf, Carola</au><au>Wittbrodt, Joachim</au><au>Arendt, Detlev</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-02-20</date><risdate>2007</risdate><volume>104</volume><issue>8</issue><spage>2727</spage><epage>2732</epage><pages>2727-2732</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During frog and fish development, convergent extension movements transform the spherical gastrula into an elongated neurula. Such transformation of a ball- into a worm-shaped embryo is an ancestral and fundamental feature of bilaterian development, yet this is modified or absent in the protostome model organisms Caenorhabditis or DROSOPHILA: In the polychaete annelid Platynereis dumerilii, early embryonic and larval stages resemble a sphere that subsequently elongates into worm shape. Cellular and molecular mechanisms of polychaete body elongation are yet unknown. Our in vivo time-lapse analysis of Platynereis axis elongation reveals that the polychaete neuroectoderm converges and extends by mediolateral cell intercalation. This occurs on both sides of the neural midline, the line of fusion of the slit-like blastopore. Convergent extension moves apart mouth and anus that are both derived from the blastopore. Tissue elongation is actin-dependent but microtubule-independent. Dependence on JNK activity and spatially restricted expression of strabismus indicates involvement of the noncanonical Wnt pathway. We detect a morphogenetic boundary between the converging and extending trunk neuroectoderm and the anterior otx-expressing head neuroectoderm that does not elongate. Our comparative analysis uncovers striking similarities but also differences between convergent extension in the polychaete and in the frog (the classical vertebrate model for convergent extension). Based on these findings, we propose that convergent extension movements of the trunk neuroectoderm represent an ancestral feature of bilaterian development that triggered the separation of mouth and anus along the elongating trunk.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17301244</pmid><doi>10.1073/pnas.0606589104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-02, Vol.104 (8), p.2727-2732 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201382928 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Annelida Anus Biological Evolution Biological Sciences Body Patterning - drug effects Caenorhabditis Cell Division - drug effects Cell tracking Cells Drosophila Ectoderm - cytology Ectoderm - drug effects Embryo, Nonmammalian - cytology Embryo, Nonmammalian - drug effects Embryology Embryos Enzyme Inhibitors - pharmacology Fish Frogs JNK Mitogen-Activated Protein Kinases - antagonists & inhibitors Larva - drug effects Larvae Marine Membrane Proteins - metabolism Models, Biological Molecular biology Molecular Sequence Data Morphogenesis - drug effects Neurons Otx Transcription Factors - metabolism Platynereis Platynereis dumerilii Polychaeta - cytology Polychaeta - drug effects Polychaeta - embryology Sea water Vertebrates Worms |
title | Polychaete trunk neuroectoderm converges and extends by mediolateral cell intercalation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T20%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polychaete%20trunk%20neuroectoderm%20converges%20and%20extends%20by%20mediolateral%20cell%20intercalation&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Steinmetz,%20Patrick%20R.H&rft.date=2007-02-20&rft.volume=104&rft.issue=8&rft.spage=2727&rft.epage=2732&rft.pages=2727-2732&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0606589104&rft_dat=%3Cjstor_proqu%3E25426542%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201382928&rft_id=info:pmid/17301244&rft_jstor_id=25426542&rfr_iscdi=true |