Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect

Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2006-09, Vol.103 (38), p.14223-14227
Hauptverfasser: Rinehart, J.P, Hayward, S.A.L, Elnitsky, M.A, Sandro, L.H, Lee, R.E. Jr, Denlinger, D.L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14227
container_issue 38
container_start_page 14223
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Rinehart, J.P
Hayward, S.A.L
Elnitsky, M.A
Sandro, L.H
Lee, R.E. Jr
Denlinger, D.L
description Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.
doi_str_mv 10.1073/pnas.0606840103
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201377416</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30052013</jstor_id><sourcerecordid>30052013</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-f12ba10b9c132177f33d7c57bfbd5ec756e99769afef3be198ef7c179c444c1d3</originalsourceid><addsrcrecordid>eNqFkkuLFDEUhQtRnHZ07UoNLgRhauamkspjI0jjCwZc6OyEkEon3dVWJzVJatB_b4puptVNr7I43znce3Oq6jmGSwycXI1ep0tgwAQFDORBtcAgcc2ohIfVAqDhtaANPauepLQFANkKeFydYSaZ4Ewuqh_L4HPvpzAlNI11tOtp0LkPHgWHNlZnlDbB_ERjDNn2PqHeo0HHO20vUDdl5ENGejUNOV3MDo3GUORCJWvy0-qR00Oyzw7veXXz8cP35ef6-uunL8v317VpRZtrh5tOY-ikwaTBnDtCVty0vHPdqrWGt8xKWabVzjrSWSyFddxgLg2l1OAVOa_e7XPHqdvZlbE-Rz2oMfY7HX-roHv1r-L7jVqHO4VbKSURJeDNISCG28mmrHZ9MnYYtLflMooJwXGZ4CRIOZGCsNOJWBLMKG8L-Po_cBum6Mu5VAOYcE4xK9DVHjIxpBStu98Ng5qLoOYiqGMRiuPl3yc58oefLwA6ALPzGEcUEQrTppkz3p5AlJuGIdtfubAv9uw25RDvYQLQzmsU_dVedzoovY59UjffZgWAs4Y2jPwBRqra-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201377416</pqid></control><display><type>article</type><title>Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rinehart, J.P ; Hayward, S.A.L ; Elnitsky, M.A ; Sandro, L.H ; Lee, R.E. Jr ; Denlinger, D.L</creator><creatorcontrib>Rinehart, J.P ; Hayward, S.A.L ; Elnitsky, M.A ; Sandro, L.H ; Lee, R.E. Jr ; Denlinger, D.L</creatorcontrib><description>Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0606840103</identifier><identifier>PMID: 16968769</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>adult insects ; Aggregation ; air temperature ; Animal behavior ; Animals ; Antarctic Regions ; Antarctica ; Belgica antarctica ; Biological Sciences ; Chironomidae - genetics ; Chironomidae - physiology ; cold tolerance ; Entomology ; Environment ; gene expression ; Gene Expression Regulation, Developmental ; gene induction ; genes ; heat ; heat shock proteins ; heat tolerance ; High temperature ; HSP70 Heat-Shock Proteins - genetics ; HSP70 Heat-Shock Proteins - metabolism ; imagos ; Insect larvae ; Insect Proteins - genetics ; Insect Proteins - metabolism ; Insects ; Larva - physiology ; Larvae ; Life Cycle Stages ; Life cycles ; Low temperature ; Midges ; Molecular Sequence Data ; nucleotide sequences ; Proteins ; Shock heating ; Survival Rate ; Temperature ; Up regulation ; Wildlife habitats</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-09, Vol.103 (38), p.14223-14227</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 19, 2006</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-f12ba10b9c132177f33d7c57bfbd5ec756e99769afef3be198ef7c179c444c1d3</citedby><cites>FETCH-LOGICAL-c585t-f12ba10b9c132177f33d7c57bfbd5ec756e99769afef3be198ef7c179c444c1d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/38.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30052013$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30052013$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,725,778,782,801,883,27907,27908,53774,53776,58000,58233</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16968769$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rinehart, J.P</creatorcontrib><creatorcontrib>Hayward, S.A.L</creatorcontrib><creatorcontrib>Elnitsky, M.A</creatorcontrib><creatorcontrib>Sandro, L.H</creatorcontrib><creatorcontrib>Lee, R.E. Jr</creatorcontrib><creatorcontrib>Denlinger, D.L</creatorcontrib><title>Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.</description><subject>adult insects</subject><subject>Aggregation</subject><subject>air temperature</subject><subject>Animal behavior</subject><subject>Animals</subject><subject>Antarctic Regions</subject><subject>Antarctica</subject><subject>Belgica antarctica</subject><subject>Biological Sciences</subject><subject>Chironomidae - genetics</subject><subject>Chironomidae - physiology</subject><subject>cold tolerance</subject><subject>Entomology</subject><subject>Environment</subject><subject>gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>gene induction</subject><subject>genes</subject><subject>heat</subject><subject>heat shock proteins</subject><subject>heat tolerance</subject><subject>High temperature</subject><subject>HSP70 Heat-Shock Proteins - genetics</subject><subject>HSP70 Heat-Shock Proteins - metabolism</subject><subject>imagos</subject><subject>Insect larvae</subject><subject>Insect Proteins - genetics</subject><subject>Insect Proteins - metabolism</subject><subject>Insects</subject><subject>Larva - physiology</subject><subject>Larvae</subject><subject>Life Cycle Stages</subject><subject>Life cycles</subject><subject>Low temperature</subject><subject>Midges</subject><subject>Molecular Sequence Data</subject><subject>nucleotide sequences</subject><subject>Proteins</subject><subject>Shock heating</subject><subject>Survival Rate</subject><subject>Temperature</subject><subject>Up regulation</subject><subject>Wildlife habitats</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkkuLFDEUhQtRnHZ07UoNLgRhauamkspjI0jjCwZc6OyEkEon3dVWJzVJatB_b4puptVNr7I43znce3Oq6jmGSwycXI1ep0tgwAQFDORBtcAgcc2ohIfVAqDhtaANPauepLQFANkKeFydYSaZ4Ewuqh_L4HPvpzAlNI11tOtp0LkPHgWHNlZnlDbB_ERjDNn2PqHeo0HHO20vUDdl5ENGejUNOV3MDo3GUORCJWvy0-qR00Oyzw7veXXz8cP35ef6-uunL8v317VpRZtrh5tOY-ikwaTBnDtCVty0vHPdqrWGt8xKWabVzjrSWSyFddxgLg2l1OAVOa_e7XPHqdvZlbE-Rz2oMfY7HX-roHv1r-L7jVqHO4VbKSURJeDNISCG28mmrHZ9MnYYtLflMooJwXGZ4CRIOZGCsNOJWBLMKG8L-Po_cBum6Mu5VAOYcE4xK9DVHjIxpBStu98Ng5qLoOYiqGMRiuPl3yc58oefLwA6ALPzGEcUEQrTppkz3p5AlJuGIdtfubAv9uw25RDvYQLQzmsU_dVedzoovY59UjffZgWAs4Y2jPwBRqra-g</recordid><startdate>20060919</startdate><enddate>20060919</enddate><creator>Rinehart, J.P</creator><creator>Hayward, S.A.L</creator><creator>Elnitsky, M.A</creator><creator>Sandro, L.H</creator><creator>Lee, R.E. Jr</creator><creator>Denlinger, D.L</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7U6</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060919</creationdate><title>Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect</title><author>Rinehart, J.P ; Hayward, S.A.L ; Elnitsky, M.A ; Sandro, L.H ; Lee, R.E. Jr ; Denlinger, D.L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-f12ba10b9c132177f33d7c57bfbd5ec756e99769afef3be198ef7c179c444c1d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>adult insects</topic><topic>Aggregation</topic><topic>air temperature</topic><topic>Animal behavior</topic><topic>Animals</topic><topic>Antarctic Regions</topic><topic>Antarctica</topic><topic>Belgica antarctica</topic><topic>Biological Sciences</topic><topic>Chironomidae - genetics</topic><topic>Chironomidae - physiology</topic><topic>cold tolerance</topic><topic>Entomology</topic><topic>Environment</topic><topic>gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>gene induction</topic><topic>genes</topic><topic>heat</topic><topic>heat shock proteins</topic><topic>heat tolerance</topic><topic>High temperature</topic><topic>HSP70 Heat-Shock Proteins - genetics</topic><topic>HSP70 Heat-Shock Proteins - metabolism</topic><topic>imagos</topic><topic>Insect larvae</topic><topic>Insect Proteins - genetics</topic><topic>Insect Proteins - metabolism</topic><topic>Insects</topic><topic>Larva - physiology</topic><topic>Larvae</topic><topic>Life Cycle Stages</topic><topic>Life cycles</topic><topic>Low temperature</topic><topic>Midges</topic><topic>Molecular Sequence Data</topic><topic>nucleotide sequences</topic><topic>Proteins</topic><topic>Shock heating</topic><topic>Survival Rate</topic><topic>Temperature</topic><topic>Up regulation</topic><topic>Wildlife habitats</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rinehart, J.P</creatorcontrib><creatorcontrib>Hayward, S.A.L</creatorcontrib><creatorcontrib>Elnitsky, M.A</creatorcontrib><creatorcontrib>Sandro, L.H</creatorcontrib><creatorcontrib>Lee, R.E. Jr</creatorcontrib><creatorcontrib>Denlinger, D.L</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rinehart, J.P</au><au>Hayward, S.A.L</au><au>Elnitsky, M.A</au><au>Sandro, L.H</au><au>Lee, R.E. Jr</au><au>Denlinger, D.L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-09-19</date><risdate>2006</risdate><volume>103</volume><issue>38</issue><spage>14223</spage><epage>14227</epage><pages>14223-14227</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Antarctica's terrestrial environment is a challenge to which very few animals have adapted. The largest, free-living animal to inhabit the continent year-round is a flightless midge, Belgica antarctica. Larval midges survive the lengthy austral winter encased in ice, and when the ice melts in summer, the larvae complete their 2-yr life cycle, and the wingless adults form mating aggregations while subjected to surprisingly high substrate temperatures. Here we report a dichotomy in survival strategies exploited by this insect at different stages of its life cycle. Larvae constitutively up-regulate their heat shock proteins (small hsp, hsp70, and hsp90) and maintain a high inherent tolerance to temperature stress. High or low temperature exposure does not further up-regulate these genes nor does it further enhance thermotolerance. Such "preemptive" synthesis of hsps is sufficient to prevent irreversible protein aggregation in response to a variety of common environmental stresses. Conversely, adults exhibit no constitutive up-regulation of their hsps and have a lower intrinsic tolerance to high temperatures, but their hsps can be thermally activated, resulting in enhanced thermotolerance. Thus, the midge larvae, but not the adults, have adopted the unusual strategy of expressing hsps continuously, possibly to facilitate proper protein folding in a cold habitat that is more thermally stable than that of the adults but a habitat subjected frequently to freeze-thaw episodes and bouts of pH, anoxic, and osmotic stress.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16968769</pmid><doi>10.1073/pnas.0606840103</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-09, Vol.103 (38), p.14223-14227
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201377416
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects adult insects
Aggregation
air temperature
Animal behavior
Animals
Antarctic Regions
Antarctica
Belgica antarctica
Biological Sciences
Chironomidae - genetics
Chironomidae - physiology
cold tolerance
Entomology
Environment
gene expression
Gene Expression Regulation, Developmental
gene induction
genes
heat
heat shock proteins
heat tolerance
High temperature
HSP70 Heat-Shock Proteins - genetics
HSP70 Heat-Shock Proteins - metabolism
imagos
Insect larvae
Insect Proteins - genetics
Insect Proteins - metabolism
Insects
Larva - physiology
Larvae
Life Cycle Stages
Life cycles
Low temperature
Midges
Molecular Sequence Data
nucleotide sequences
Proteins
Shock heating
Survival Rate
Temperature
Up regulation
Wildlife habitats
title Continuous up-regulation of heat shock proteins in larvae, but not adults, of a polar insect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T02%3A07%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Continuous%20up-regulation%20of%20heat%20shock%20proteins%20in%20larvae,%20but%20not%20adults,%20of%20a%20polar%20insect&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Rinehart,%20J.P&rft.date=2006-09-19&rft.volume=103&rft.issue=38&rft.spage=14223&rft.epage=14227&rft.pages=14223-14227&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0606840103&rft_dat=%3Cjstor_proqu%3E30052013%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201377416&rft_id=info:pmid/16968769&rft_jstor_id=30052013&rfr_iscdi=true