Mechanical limits of viral capsids

We studied the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages, such as φ29 and cowpea chlorotic mottle virus. We demonstrate how, in a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (24), p.9925-9930
Hauptverfasser: Buenemann, Mathias, Lenz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9930
container_issue 24
container_start_page 9925
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Buenemann, Mathias
Lenz, Peter
description We studied the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages, such as φ29 and cowpea chlorotic mottle virus. We demonstrate how, in a combined numerical and experimental approach, the elastic parameters can be determined with high precision. The experimentally observed bimodality of elastic spring constants is shown to be of geometrical origin, namely the presence of pentavalent units in the viral shell. We define a criterion for capsid breakage that explains well the experimentally observed rupture. From our numerics we find a crossover from γ²/³ to γ¹/² for the dependence of the rupture force on the Föppl-von Kármán number, γ. For filled capsids, high internal pressures lead to a stronger destabilization for viruses with buckled ground states versus viruses with unbuckled ground states. Finally, we show how our numerically calculated energy maps can be used to extract information about the strength of protein-protein interactions from rupture experiments.
doi_str_mv 10.1073/pnas.0611472104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201374404</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25435860</jstor_id><sourcerecordid>25435860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c618t-5ee02d6184715136706800828003260d2e077e7957d9dc7bcbbe88770fb7f9773</originalsourceid><addsrcrecordid>eNqFkc9PFDEUxxujkQU9exI3HIiXgddf89oLiSGgJhgPyrnpdDrQzex0aWeI_Pd0sxtWOeClP9LP-77v65eQDxROKCA_XQ02n0BNqUBGQbwiMwqaVrXQ8JrMABhWSjCxR_ZzXgCAlgrekj2KUkgOekaOfnh3a4fgbD_vwzKMeR67-X1I5e7sKoc2vyNvOttn_367H5Dry4vf59-qq59fv59_uapcTdVYSe-BteUokErKa4RaAShWFs5qaJkHRI9aYqtbh41rGq8UInQNdhqRH5Czje5qapa-dX4YiwuzSmFp04OJNph_X4Zwa27ivaFKU8agCBxvBVK8m3wezTJk5_veDj5O2RRHDBn8H2TAdK2pKuDRM3ARpzSUXygM5SgEiAKdbiCXYs7Jd0-WKZh1SmadktmlVCoO_550x29jKcCnLbCu3MkJw4TRmslCfH6ZMN3U96P_Mxb04wZd5DGmJ5ZJwaWqYdess9HYmxSyuf61Hg8AFUdF-SM7yrXK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201374404</pqid></control><display><type>article</type><title>Mechanical limits of viral capsids</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Buenemann, Mathias ; Lenz, Peter</creator><creatorcontrib>Buenemann, Mathias ; Lenz, Peter</creatorcontrib><description>We studied the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages, such as φ29 and cowpea chlorotic mottle virus. We demonstrate how, in a combined numerical and experimental approach, the elastic parameters can be determined with high precision. The experimentally observed bimodality of elastic spring constants is shown to be of geometrical origin, namely the presence of pentavalent units in the viral shell. We define a criterion for capsid breakage that explains well the experimentally observed rupture. From our numerics we find a crossover from γ²/³ to γ¹/² for the dependence of the rupture force on the Föppl-von Kármán number, γ. For filled capsids, high internal pressures lead to a stronger destabilization for viruses with buckled ground states versus viruses with unbuckled ground states. Finally, we show how our numerically calculated energy maps can be used to extract information about the strength of protein-protein interactions from rupture experiments.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0611472104</identifier><identifier>PMID: 17545309</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteriophages ; Bending ; Capsid ; Capsid - chemistry ; Computer Simulation ; Cowpea chlorotic mottle virus ; DNA ; Elastic shells ; Elasticity ; Experiments ; Geometry ; Internal pressure ; Models, Biological ; Osmotic Pressure ; Physical Sciences ; Proteins ; Spring constant ; Stress, Mechanical ; Vertices ; Virology ; Virus Physiological Phenomena ; Viruses ; Viruses - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (24), p.9925-9930</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 12, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c618t-5ee02d6184715136706800828003260d2e077e7957d9dc7bcbbe88770fb7f9773</citedby><cites>FETCH-LOGICAL-c618t-5ee02d6184715136706800828003260d2e077e7957d9dc7bcbbe88770fb7f9773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25435860$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25435860$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17545309$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Buenemann, Mathias</creatorcontrib><creatorcontrib>Lenz, Peter</creatorcontrib><title>Mechanical limits of viral capsids</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We studied the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages, such as φ29 and cowpea chlorotic mottle virus. We demonstrate how, in a combined numerical and experimental approach, the elastic parameters can be determined with high precision. The experimentally observed bimodality of elastic spring constants is shown to be of geometrical origin, namely the presence of pentavalent units in the viral shell. We define a criterion for capsid breakage that explains well the experimentally observed rupture. From our numerics we find a crossover from γ²/³ to γ¹/² for the dependence of the rupture force on the Föppl-von Kármán number, γ. For filled capsids, high internal pressures lead to a stronger destabilization for viruses with buckled ground states versus viruses with unbuckled ground states. Finally, we show how our numerically calculated energy maps can be used to extract information about the strength of protein-protein interactions from rupture experiments.</description><subject>Bacteriophages</subject><subject>Bending</subject><subject>Capsid</subject><subject>Capsid - chemistry</subject><subject>Computer Simulation</subject><subject>Cowpea chlorotic mottle virus</subject><subject>DNA</subject><subject>Elastic shells</subject><subject>Elasticity</subject><subject>Experiments</subject><subject>Geometry</subject><subject>Internal pressure</subject><subject>Models, Biological</subject><subject>Osmotic Pressure</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Spring constant</subject><subject>Stress, Mechanical</subject><subject>Vertices</subject><subject>Virology</subject><subject>Virus Physiological Phenomena</subject><subject>Viruses</subject><subject>Viruses - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9PFDEUxxujkQU9exI3HIiXgddf89oLiSGgJhgPyrnpdDrQzex0aWeI_Pd0sxtWOeClP9LP-77v65eQDxROKCA_XQ02n0BNqUBGQbwiMwqaVrXQ8JrMABhWSjCxR_ZzXgCAlgrekj2KUkgOekaOfnh3a4fgbD_vwzKMeR67-X1I5e7sKoc2vyNvOttn_367H5Dry4vf59-qq59fv59_uapcTdVYSe-BteUokErKa4RaAShWFs5qaJkHRI9aYqtbh41rGq8UInQNdhqRH5Czje5qapa-dX4YiwuzSmFp04OJNph_X4Zwa27ivaFKU8agCBxvBVK8m3wezTJk5_veDj5O2RRHDBn8H2TAdK2pKuDRM3ARpzSUXygM5SgEiAKdbiCXYs7Jd0-WKZh1SmadktmlVCoO_550x29jKcCnLbCu3MkJw4TRmslCfH6ZMN3U96P_Mxb04wZd5DGmJ5ZJwaWqYdess9HYmxSyuf61Hg8AFUdF-SM7yrXK</recordid><startdate>20070612</startdate><enddate>20070612</enddate><creator>Buenemann, Mathias</creator><creator>Lenz, Peter</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070612</creationdate><title>Mechanical limits of viral capsids</title><author>Buenemann, Mathias ; Lenz, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c618t-5ee02d6184715136706800828003260d2e077e7957d9dc7bcbbe88770fb7f9773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Bacteriophages</topic><topic>Bending</topic><topic>Capsid</topic><topic>Capsid - chemistry</topic><topic>Computer Simulation</topic><topic>Cowpea chlorotic mottle virus</topic><topic>DNA</topic><topic>Elastic shells</topic><topic>Elasticity</topic><topic>Experiments</topic><topic>Geometry</topic><topic>Internal pressure</topic><topic>Models, Biological</topic><topic>Osmotic Pressure</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Spring constant</topic><topic>Stress, Mechanical</topic><topic>Vertices</topic><topic>Virology</topic><topic>Virus Physiological Phenomena</topic><topic>Viruses</topic><topic>Viruses - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buenemann, Mathias</creatorcontrib><creatorcontrib>Lenz, Peter</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buenemann, Mathias</au><au>Lenz, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical limits of viral capsids</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-12</date><risdate>2007</risdate><volume>104</volume><issue>24</issue><spage>9925</spage><epage>9930</epage><pages>9925-9930</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We studied the elastic properties and mechanical stability of viral capsids under external force-loading with computer simulations. Our approach allows the implementation of specific geometries corresponding to specific phages, such as φ29 and cowpea chlorotic mottle virus. We demonstrate how, in a combined numerical and experimental approach, the elastic parameters can be determined with high precision. The experimentally observed bimodality of elastic spring constants is shown to be of geometrical origin, namely the presence of pentavalent units in the viral shell. We define a criterion for capsid breakage that explains well the experimentally observed rupture. From our numerics we find a crossover from γ²/³ to γ¹/² for the dependence of the rupture force on the Föppl-von Kármán number, γ. For filled capsids, high internal pressures lead to a stronger destabilization for viruses with buckled ground states versus viruses with unbuckled ground states. Finally, we show how our numerically calculated energy maps can be used to extract information about the strength of protein-protein interactions from rupture experiments.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17545309</pmid><doi>10.1073/pnas.0611472104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (24), p.9925-9930
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201374404
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Bacteriophages
Bending
Capsid
Capsid - chemistry
Computer Simulation
Cowpea chlorotic mottle virus
DNA
Elastic shells
Elasticity
Experiments
Geometry
Internal pressure
Models, Biological
Osmotic Pressure
Physical Sciences
Proteins
Spring constant
Stress, Mechanical
Vertices
Virology
Virus Physiological Phenomena
Viruses
Viruses - chemistry
title Mechanical limits of viral capsids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A16%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20limits%20of%20viral%20capsids&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Buenemann,%20Mathias&rft.date=2007-06-12&rft.volume=104&rft.issue=24&rft.spage=9925&rft.epage=9930&rft.pages=9925-9930&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0611472104&rft_dat=%3Cjstor_proqu%3E25435860%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201374404&rft_id=info:pmid/17545309&rft_jstor_id=25435860&rfr_iscdi=true