The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties
Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscop...
Gespeichert in:
Veröffentlicht in: | Macromolecular materials and engineering 2018-03, Vol.303 (3), p.n/a |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Macromolecular materials and engineering |
container_volume | 303 |
creator | Arabi, Neda Zamanian, Ali Rashvand, Sarvenaz N. Ghorbani, Farnaz |
description | Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties.
Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin. |
doi_str_mv | 10.1002/mame.201700539 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2013691331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013691331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</originalsourceid><addsrcrecordid>eNqFkc1O4zAUhaMRSFPKbGdtabak2LGT1LNrUQcqUajUaraRa9-0RolvsBOh7uYdeApeiychpWhYsro_-s650j1R9JPREaM0uaxVDaOEspzSlMtv0YAJLuOEpuLkvR_HuZDJ9-gshAfaY2PJB9HLegdk3Tm1qYAs0WMXyKr1nW47DwRLcg2Vaq17_fc8tbitVAjkTjnUWDcYbAtkpVVZYmUCKdGTKbrez4bQAZm5rXUA3rotmTRNZXXvhC78JsvdPliNegd1v6wuyAL0Trljr5whc0f-2tYjWXpswLcWwnl0WqoqwI-POoxWf2brq5v49v56fjW5jTVPhYzHmUpTPpapZIpKQXk_CZltjDClUEaBYYlJjZBsI3WuTU455CbjZlOajPFh9Ovo2nh87CC0xQN23vUHi_61PJOM8wM1OlLaYwgeyqLxtlZ-XzBaHMIoDmEU_8PoBfIoeLIV7L-gi8VkMfvUvgGMxZJD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013691331</pqid></control><display><type>article</type><title>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arabi, Neda ; Zamanian, Ali ; Rashvand, Sarvenaz N. ; Ghorbani, Farnaz</creator><creatorcontrib>Arabi, Neda ; Zamanian, Ali ; Rashvand, Sarvenaz N. ; Ghorbani, Farnaz</creatorcontrib><description>Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties.
Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201700539</identifier><language>eng</language><publisher>Weinheim: John Wiley & Sons, Inc</publisher><subject>Absorption ; Apatite ; Augmentation ; Biocompatibility ; Biodegradation ; Bioglass ; Biological properties ; Biomedical materials ; biomineralization ; Body fluids ; Compressive strength ; Fourier transforms ; freeze casting ; Gelatin ; Image transmission ; In vitro methods and tests ; Infrared spectroscopy ; Lamellar structure ; Nanocomposites ; Orientation effects ; Pore size distribution ; Porosity ; scaffold ; Scaffolds ; Scanning electron microscopy ; Sol-gel processes ; Spectrum analysis ; Surgical implants ; Tissue engineering ; unidirectional pores</subject><ispartof>Macromolecular materials and engineering, 2018-03, Vol.303 (3), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</citedby><cites>FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</cites><orcidid>0000-0002-7012-7387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201700539$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201700539$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arabi, Neda</creatorcontrib><creatorcontrib>Zamanian, Ali</creatorcontrib><creatorcontrib>Rashvand, Sarvenaz N.</creatorcontrib><creatorcontrib>Ghorbani, Farnaz</creatorcontrib><title>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</title><title>Macromolecular materials and engineering</title><description>Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties.
Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.</description><subject>Absorption</subject><subject>Apatite</subject><subject>Augmentation</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Bioglass</subject><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>biomineralization</subject><subject>Body fluids</subject><subject>Compressive strength</subject><subject>Fourier transforms</subject><subject>freeze casting</subject><subject>Gelatin</subject><subject>Image transmission</subject><subject>In vitro methods and tests</subject><subject>Infrared spectroscopy</subject><subject>Lamellar structure</subject><subject>Nanocomposites</subject><subject>Orientation effects</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>unidirectional pores</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O4zAUhaMRSFPKbGdtabak2LGT1LNrUQcqUajUaraRa9-0RolvsBOh7uYdeApeiychpWhYsro_-s650j1R9JPREaM0uaxVDaOEspzSlMtv0YAJLuOEpuLkvR_HuZDJ9-gshAfaY2PJB9HLegdk3Tm1qYAs0WMXyKr1nW47DwRLcg2Vaq17_fc8tbitVAjkTjnUWDcYbAtkpVVZYmUCKdGTKbrez4bQAZm5rXUA3rotmTRNZXXvhC78JsvdPliNegd1v6wuyAL0Trljr5whc0f-2tYjWXpswLcWwnl0WqoqwI-POoxWf2brq5v49v56fjW5jTVPhYzHmUpTPpapZIpKQXk_CZltjDClUEaBYYlJjZBsI3WuTU455CbjZlOajPFh9Ovo2nh87CC0xQN23vUHi_61PJOM8wM1OlLaYwgeyqLxtlZ-XzBaHMIoDmEU_8PoBfIoeLIV7L-gi8VkMfvUvgGMxZJD</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Arabi, Neda</creator><creator>Zamanian, Ali</creator><creator>Rashvand, Sarvenaz N.</creator><creator>Ghorbani, Farnaz</creator><general>John Wiley & Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7012-7387</orcidid></search><sort><creationdate>201803</creationdate><title>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</title><author>Arabi, Neda ; Zamanian, Ali ; Rashvand, Sarvenaz N. ; Ghorbani, Farnaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Apatite</topic><topic>Augmentation</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Bioglass</topic><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>biomineralization</topic><topic>Body fluids</topic><topic>Compressive strength</topic><topic>Fourier transforms</topic><topic>freeze casting</topic><topic>Gelatin</topic><topic>Image transmission</topic><topic>In vitro methods and tests</topic><topic>Infrared spectroscopy</topic><topic>Lamellar structure</topic><topic>Nanocomposites</topic><topic>Orientation effects</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>unidirectional pores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabi, Neda</creatorcontrib><creatorcontrib>Zamanian, Ali</creatorcontrib><creatorcontrib>Rashvand, Sarvenaz N.</creatorcontrib><creatorcontrib>Ghorbani, Farnaz</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabi, Neda</au><au>Zamanian, Ali</au><au>Rashvand, Sarvenaz N.</au><au>Ghorbani, Farnaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2018-03</date><risdate>2018</risdate><volume>303</volume><issue>3</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties.
Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.</abstract><cop>Weinheim</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/mame.201700539</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7012-7387</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1438-7492 |
ispartof | Macromolecular materials and engineering, 2018-03, Vol.303 (3), p.n/a |
issn | 1438-7492 1439-2054 |
language | eng |
recordid | cdi_proquest_journals_2013691331 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Absorption Apatite Augmentation Biocompatibility Biodegradation Bioglass Biological properties Biomedical materials biomineralization Body fluids Compressive strength Fourier transforms freeze casting Gelatin Image transmission In vitro methods and tests Infrared spectroscopy Lamellar structure Nanocomposites Orientation effects Pore size distribution Porosity scaffold Scaffolds Scanning electron microscopy Sol-gel processes Spectrum analysis Surgical implants Tissue engineering unidirectional pores |
title | The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Tunable%20Porous%20Structure%20of%20Gelatin%E2%80%93Bioglass%20Nanocomposite%20Scaffolds%20for%20Bone%20Tissue%20Engineering%20Applications:%20Physicochemical,%20Mechanical,%20and%20In%20Vitro%20Properties&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Arabi,%20Neda&rft.date=2018-03&rft.volume=303&rft.issue=3&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201700539&rft_dat=%3Cproquest_cross%3E2013691331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013691331&rft_id=info:pmid/&rfr_iscdi=true |