The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties

Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular materials and engineering 2018-03, Vol.303 (3), p.n/a
Hauptverfasser: Arabi, Neda, Zamanian, Ali, Rashvand, Sarvenaz N., Ghorbani, Farnaz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Macromolecular materials and engineering
container_volume 303
creator Arabi, Neda
Zamanian, Ali
Rashvand, Sarvenaz N.
Ghorbani, Farnaz
description Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties. Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.
doi_str_mv 10.1002/mame.201700539
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2013691331</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2013691331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</originalsourceid><addsrcrecordid>eNqFkc1O4zAUhaMRSFPKbGdtabak2LGT1LNrUQcqUajUaraRa9-0RolvsBOh7uYdeApeiychpWhYsro_-s650j1R9JPREaM0uaxVDaOEspzSlMtv0YAJLuOEpuLkvR_HuZDJ9-gshAfaY2PJB9HLegdk3Tm1qYAs0WMXyKr1nW47DwRLcg2Vaq17_fc8tbitVAjkTjnUWDcYbAtkpVVZYmUCKdGTKbrez4bQAZm5rXUA3rotmTRNZXXvhC78JsvdPliNegd1v6wuyAL0Trljr5whc0f-2tYjWXpswLcWwnl0WqoqwI-POoxWf2brq5v49v56fjW5jTVPhYzHmUpTPpapZIpKQXk_CZltjDClUEaBYYlJjZBsI3WuTU455CbjZlOajPFh9Ovo2nh87CC0xQN23vUHi_61PJOM8wM1OlLaYwgeyqLxtlZ-XzBaHMIoDmEU_8PoBfIoeLIV7L-gi8VkMfvUvgGMxZJD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013691331</pqid></control><display><type>article</type><title>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Arabi, Neda ; Zamanian, Ali ; Rashvand, Sarvenaz N. ; Ghorbani, Farnaz</creator><creatorcontrib>Arabi, Neda ; Zamanian, Ali ; Rashvand, Sarvenaz N. ; Ghorbani, Farnaz</creatorcontrib><description>Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties. Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.</description><identifier>ISSN: 1438-7492</identifier><identifier>EISSN: 1439-2054</identifier><identifier>DOI: 10.1002/mame.201700539</identifier><language>eng</language><publisher>Weinheim: John Wiley &amp; Sons, Inc</publisher><subject>Absorption ; Apatite ; Augmentation ; Biocompatibility ; Biodegradation ; Bioglass ; Biological properties ; Biomedical materials ; biomineralization ; Body fluids ; Compressive strength ; Fourier transforms ; freeze casting ; Gelatin ; Image transmission ; In vitro methods and tests ; Infrared spectroscopy ; Lamellar structure ; Nanocomposites ; Orientation effects ; Pore size distribution ; Porosity ; scaffold ; Scaffolds ; Scanning electron microscopy ; Sol-gel processes ; Spectrum analysis ; Surgical implants ; Tissue engineering ; unidirectional pores</subject><ispartof>Macromolecular materials and engineering, 2018-03, Vol.303 (3), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</citedby><cites>FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</cites><orcidid>0000-0002-7012-7387</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmame.201700539$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmame.201700539$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Arabi, Neda</creatorcontrib><creatorcontrib>Zamanian, Ali</creatorcontrib><creatorcontrib>Rashvand, Sarvenaz N.</creatorcontrib><creatorcontrib>Ghorbani, Farnaz</creatorcontrib><title>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</title><title>Macromolecular materials and engineering</title><description>Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties. Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.</description><subject>Absorption</subject><subject>Apatite</subject><subject>Augmentation</subject><subject>Biocompatibility</subject><subject>Biodegradation</subject><subject>Bioglass</subject><subject>Biological properties</subject><subject>Biomedical materials</subject><subject>biomineralization</subject><subject>Body fluids</subject><subject>Compressive strength</subject><subject>Fourier transforms</subject><subject>freeze casting</subject><subject>Gelatin</subject><subject>Image transmission</subject><subject>In vitro methods and tests</subject><subject>Infrared spectroscopy</subject><subject>Lamellar structure</subject><subject>Nanocomposites</subject><subject>Orientation effects</subject><subject>Pore size distribution</subject><subject>Porosity</subject><subject>scaffold</subject><subject>Scaffolds</subject><subject>Scanning electron microscopy</subject><subject>Sol-gel processes</subject><subject>Spectrum analysis</subject><subject>Surgical implants</subject><subject>Tissue engineering</subject><subject>unidirectional pores</subject><issn>1438-7492</issn><issn>1439-2054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1O4zAUhaMRSFPKbGdtabak2LGT1LNrUQcqUajUaraRa9-0RolvsBOh7uYdeApeiychpWhYsro_-s650j1R9JPREaM0uaxVDaOEspzSlMtv0YAJLuOEpuLkvR_HuZDJ9-gshAfaY2PJB9HLegdk3Tm1qYAs0WMXyKr1nW47DwRLcg2Vaq17_fc8tbitVAjkTjnUWDcYbAtkpVVZYmUCKdGTKbrez4bQAZm5rXUA3rotmTRNZXXvhC78JsvdPliNegd1v6wuyAL0Trljr5whc0f-2tYjWXpswLcWwnl0WqoqwI-POoxWf2brq5v49v56fjW5jTVPhYzHmUpTPpapZIpKQXk_CZltjDClUEaBYYlJjZBsI3WuTU455CbjZlOajPFh9Ovo2nh87CC0xQN23vUHi_61PJOM8wM1OlLaYwgeyqLxtlZ-XzBaHMIoDmEU_8PoBfIoeLIV7L-gi8VkMfvUvgGMxZJD</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Arabi, Neda</creator><creator>Zamanian, Ali</creator><creator>Rashvand, Sarvenaz N.</creator><creator>Ghorbani, Farnaz</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-7012-7387</orcidid></search><sort><creationdate>201803</creationdate><title>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</title><author>Arabi, Neda ; Zamanian, Ali ; Rashvand, Sarvenaz N. ; Ghorbani, Farnaz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-86a55389591a09403553496bd4df4adaed12d5d491b9c7cd703e7d63dbfd613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Apatite</topic><topic>Augmentation</topic><topic>Biocompatibility</topic><topic>Biodegradation</topic><topic>Bioglass</topic><topic>Biological properties</topic><topic>Biomedical materials</topic><topic>biomineralization</topic><topic>Body fluids</topic><topic>Compressive strength</topic><topic>Fourier transforms</topic><topic>freeze casting</topic><topic>Gelatin</topic><topic>Image transmission</topic><topic>In vitro methods and tests</topic><topic>Infrared spectroscopy</topic><topic>Lamellar structure</topic><topic>Nanocomposites</topic><topic>Orientation effects</topic><topic>Pore size distribution</topic><topic>Porosity</topic><topic>scaffold</topic><topic>Scaffolds</topic><topic>Scanning electron microscopy</topic><topic>Sol-gel processes</topic><topic>Spectrum analysis</topic><topic>Surgical implants</topic><topic>Tissue engineering</topic><topic>unidirectional pores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arabi, Neda</creatorcontrib><creatorcontrib>Zamanian, Ali</creatorcontrib><creatorcontrib>Rashvand, Sarvenaz N.</creatorcontrib><creatorcontrib>Ghorbani, Farnaz</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Macromolecular materials and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arabi, Neda</au><au>Zamanian, Ali</au><au>Rashvand, Sarvenaz N.</au><au>Ghorbani, Farnaz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties</atitle><jtitle>Macromolecular materials and engineering</jtitle><date>2018-03</date><risdate>2018</risdate><volume>303</volume><issue>3</issue><epage>n/a</epage><issn>1438-7492</issn><eissn>1439-2054</eissn><abstract>Unidirectional freeze‐casting method is used to fabricate gelatin–bioglass nanoparticles (BGNPs) scaffolds. Transmission electron microscopy (TEM) images show that sol–gel prepared BGNPs are distributed throughout the scaffold with diameters of less than 10 nm. Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetric are used to evaluate the physicochemical properties of BGNPs. Scanning electron microscopy (SEM) micrographs present an oriented porous structure and a homogeneous distribution of BGNPs in the gelatin matrix. The lamellar‐type structure indicates an improvement of mechanical strength and absorption capacity of the scaffolds. Increasing the concentration of BGNPs from 0 to 50 wt% have no noticeable effect on pore orientation, but decreases porosity and pore size distribution. Increase in BGNPs content improves the compressive strength. The absorption and biodegradation rate reduces with augmentation in BGNPs concentration. Bioactivity is evaluated through apatite formation after immersion of the nanocomposites in simulated body fluid and is verified by SEM–energy‐dispersive X‐ray spectroscopy (EDS), an element map analysis, X‐ray powder diffractometer, and FTIR spectrum. SEM images and methyl thiazolyl tetrazolium assay confirm the biocompatibility of scaffolds and the supportive behavior of nanocomposites in cellular spreading. The results show that gelatin–(30 wt%)bioglass nanocomposites have incipient physicochemical and biological properties. Gelatin–bioglass scaffolds with unidirectional pores are obtained by freeze‐casting technique. Therefore, bioactive–glass nanoparticles are synthesized by the sol–gel method and induce bioactive behavior to the constructs. Improvement of compression strength is assessed by lamellar‐type microstructure. Betterment of mechanical stability and bioactivity are provided by increasing bioglass content. Cellular spreading is ameliorated by the addition of bioglass to pure gelatin.</abstract><cop>Weinheim</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/mame.201700539</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-7012-7387</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1438-7492
ispartof Macromolecular materials and engineering, 2018-03, Vol.303 (3), p.n/a
issn 1438-7492
1439-2054
language eng
recordid cdi_proquest_journals_2013691331
source Wiley Online Library Journals Frontfile Complete
subjects Absorption
Apatite
Augmentation
Biocompatibility
Biodegradation
Bioglass
Biological properties
Biomedical materials
biomineralization
Body fluids
Compressive strength
Fourier transforms
freeze casting
Gelatin
Image transmission
In vitro methods and tests
Infrared spectroscopy
Lamellar structure
Nanocomposites
Orientation effects
Pore size distribution
Porosity
scaffold
Scaffolds
Scanning electron microscopy
Sol-gel processes
Spectrum analysis
Surgical implants
Tissue engineering
unidirectional pores
title The Tunable Porous Structure of Gelatin–Bioglass Nanocomposite Scaffolds for Bone Tissue Engineering Applications: Physicochemical, Mechanical, and In Vitro Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T10%3A02%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Tunable%20Porous%20Structure%20of%20Gelatin%E2%80%93Bioglass%20Nanocomposite%20Scaffolds%20for%20Bone%20Tissue%20Engineering%20Applications:%20Physicochemical,%20Mechanical,%20and%20In%20Vitro%20Properties&rft.jtitle=Macromolecular%20materials%20and%20engineering&rft.au=Arabi,%20Neda&rft.date=2018-03&rft.volume=303&rft.issue=3&rft.epage=n/a&rft.issn=1438-7492&rft.eissn=1439-2054&rft_id=info:doi/10.1002/mame.201700539&rft_dat=%3Cproquest_cross%3E2013691331%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013691331&rft_id=info:pmid/&rfr_iscdi=true