Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells
Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2001-10, Vol.98 (21), p.12221-12226 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12226 |
---|---|
container_issue | 21 |
container_start_page | 12221 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 98 |
creator | Goetz, Monika Bubert, Andreas Wang, Gefu Chico-Calero, Isabel Vazquez-Boland, Jose-Antonio Beck, Markus Slaghuis, Joerg Szalay, Aladar A. Goebel, Werner |
description | Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells. |
doi_str_mv | 10.1073/pnas.211106398 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201367240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056876</jstor_id><sourcerecordid>3056876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</originalsourceid><addsrcrecordid>eNqF0c-PEyEUB3BiNG539erJ6MSD8TL1AcMAyV600V2TbrzombyZMpZmChUYdf_7pWmtPw56guR9HuG9LyFPKMwpSP565zHNGaUUWq7VPTKjoGndNhrukxkAk7VqWHNGzlPaAIAWCh6SM0qFZJq3M7K8cX0Mzm9sn13wFfpVdRXD97yuwlC9xT7b6LByvsprWy1uc0hh3JducLvF0aGvrkPK1cKOY3pEHgw4Jvv4eF6Qz-_ffVpc18uPVx8Wb5Z1Lxjk2g6ig5WUKLXlSklQDUohKB90B1J1A5MIEjmCaBvoONIBGFrBObbltuIX5PLw7m7qtnbVW58jjmYX3RbjrQnozJ8V79bmS_hmhJZalPaXx_YYvk42ZbN1qS8DoLdhSkYyqhoJzX8hVRQE17rAF3_BTZiiLzswDChvJWugoPkBlYWnFO1w-jAFsw_T7MM0pzBLw7Pfx_zFj-kV8PwI9o0_y1qVNwxljNEiXv1bmGEax2x_5EKfHugm5RBPlpcQlGz5Heibu6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367240</pqid></control><display><type>article</type><title>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Goetz, Monika ; Bubert, Andreas ; Wang, Gefu ; Chico-Calero, Isabel ; Vazquez-Boland, Jose-Antonio ; Beck, Markus ; Slaghuis, Joerg ; Szalay, Aladar A. ; Goebel, Werner</creator><creatorcontrib>Goetz, Monika ; Bubert, Andreas ; Wang, Gefu ; Chico-Calero, Isabel ; Vazquez-Boland, Jose-Antonio ; Beck, Markus ; Slaghuis, Joerg ; Szalay, Aladar A. ; Goebel, Werner</creatorcontrib><description>Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.211106398</identifier><identifier>PMID: 11572936</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Apoptosis ; Bacteria ; Bacterial Proteins - genetics ; Biological Sciences ; Caco 2 cells ; Cell growth ; Cells ; Cultured cells ; Cytosol ; Cytosol - metabolism ; Cytosol - microbiology ; Epithelial cells ; Escherichia coli ; Escherichia coli - growth & development ; Genes, Bacterial ; Hepatocytes ; hpp gene ; Humans ; Listeria monocytogenes ; Listeria monocytogenes - growth & development ; Mammals ; Microbiology ; Microinjections ; Microinjections - methods ; Peptide Termination Factors ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Plasmids ; PrfA protein ; Shigella flexneri ; Shigella flexneri - growth & development ; Trans-Activators - genetics ; Vacuoles - microbiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-10, Vol.98 (21), p.12221-12226</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 9, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</citedby><cites>FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056876$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056876$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11572936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goetz, Monika</creatorcontrib><creatorcontrib>Bubert, Andreas</creatorcontrib><creatorcontrib>Wang, Gefu</creatorcontrib><creatorcontrib>Chico-Calero, Isabel</creatorcontrib><creatorcontrib>Vazquez-Boland, Jose-Antonio</creatorcontrib><creatorcontrib>Beck, Markus</creatorcontrib><creatorcontrib>Slaghuis, Joerg</creatorcontrib><creatorcontrib>Szalay, Aladar A.</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><title>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Sciences</subject><subject>Caco 2 cells</subject><subject>Cell growth</subject><subject>Cells</subject><subject>Cultured cells</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - microbiology</subject><subject>Epithelial cells</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth & development</subject><subject>Genes, Bacterial</subject><subject>Hepatocytes</subject><subject>hpp gene</subject><subject>Humans</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - growth & development</subject><subject>Mammals</subject><subject>Microbiology</subject><subject>Microinjections</subject><subject>Microinjections - methods</subject><subject>Peptide Termination Factors</subject><subject>Phosphorylation</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Plasmids</subject><subject>PrfA protein</subject><subject>Shigella flexneri</subject><subject>Shigella flexneri - growth & development</subject><subject>Trans-Activators - genetics</subject><subject>Vacuoles - microbiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c-PEyEUB3BiNG539erJ6MSD8TL1AcMAyV600V2TbrzombyZMpZmChUYdf_7pWmtPw56guR9HuG9LyFPKMwpSP565zHNGaUUWq7VPTKjoGndNhrukxkAk7VqWHNGzlPaAIAWCh6SM0qFZJq3M7K8cX0Mzm9sn13wFfpVdRXD97yuwlC9xT7b6LByvsprWy1uc0hh3JducLvF0aGvrkPK1cKOY3pEHgw4Jvv4eF6Qz-_ffVpc18uPVx8Wb5Z1Lxjk2g6ig5WUKLXlSklQDUohKB90B1J1A5MIEjmCaBvoONIBGFrBObbltuIX5PLw7m7qtnbVW58jjmYX3RbjrQnozJ8V79bmS_hmhJZalPaXx_YYvk42ZbN1qS8DoLdhSkYyqhoJzX8hVRQE17rAF3_BTZiiLzswDChvJWugoPkBlYWnFO1w-jAFsw_T7MM0pzBLw7Pfx_zFj-kV8PwI9o0_y1qVNwxljNEiXv1bmGEax2x_5EKfHugm5RBPlpcQlGz5Heibu6M</recordid><startdate>20011009</startdate><enddate>20011009</enddate><creator>Goetz, Monika</creator><creator>Bubert, Andreas</creator><creator>Wang, Gefu</creator><creator>Chico-Calero, Isabel</creator><creator>Vazquez-Boland, Jose-Antonio</creator><creator>Beck, Markus</creator><creator>Slaghuis, Joerg</creator><creator>Szalay, Aladar A.</creator><creator>Goebel, Werner</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011009</creationdate><title>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</title><author>Goetz, Monika ; Bubert, Andreas ; Wang, Gefu ; Chico-Calero, Isabel ; Vazquez-Boland, Jose-Antonio ; Beck, Markus ; Slaghuis, Joerg ; Szalay, Aladar A. ; Goebel, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Sciences</topic><topic>Caco 2 cells</topic><topic>Cell growth</topic><topic>Cells</topic><topic>Cultured cells</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - microbiology</topic><topic>Epithelial cells</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth & development</topic><topic>Genes, Bacterial</topic><topic>Hepatocytes</topic><topic>hpp gene</topic><topic>Humans</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - growth & development</topic><topic>Mammals</topic><topic>Microbiology</topic><topic>Microinjections</topic><topic>Microinjections - methods</topic><topic>Peptide Termination Factors</topic><topic>Phosphorylation</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Plasmids</topic><topic>PrfA protein</topic><topic>Shigella flexneri</topic><topic>Shigella flexneri - growth & development</topic><topic>Trans-Activators - genetics</topic><topic>Vacuoles - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goetz, Monika</creatorcontrib><creatorcontrib>Bubert, Andreas</creatorcontrib><creatorcontrib>Wang, Gefu</creatorcontrib><creatorcontrib>Chico-Calero, Isabel</creatorcontrib><creatorcontrib>Vazquez-Boland, Jose-Antonio</creatorcontrib><creatorcontrib>Beck, Markus</creatorcontrib><creatorcontrib>Slaghuis, Joerg</creatorcontrib><creatorcontrib>Szalay, Aladar A.</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goetz, Monika</au><au>Bubert, Andreas</au><au>Wang, Gefu</au><au>Chico-Calero, Isabel</au><au>Vazquez-Boland, Jose-Antonio</au><au>Beck, Markus</au><au>Slaghuis, Joerg</au><au>Szalay, Aladar A.</au><au>Goebel, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-10-09</date><risdate>2001</risdate><volume>98</volume><issue>21</issue><spage>12221</spage><epage>12226</epage><pages>12221-12226</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11572936</pmid><doi>10.1073/pnas.211106398</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2001-10, Vol.98 (21), p.12221-12226 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201367240 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Animals Apoptosis Bacteria Bacterial Proteins - genetics Biological Sciences Caco 2 cells Cell growth Cells Cultured cells Cytosol Cytosol - metabolism Cytosol - microbiology Epithelial cells Escherichia coli Escherichia coli - growth & development Genes, Bacterial Hepatocytes hpp gene Humans Listeria monocytogenes Listeria monocytogenes - growth & development Mammals Microbiology Microinjections Microinjections - methods Peptide Termination Factors Phosphorylation Phosphotransferases (Alcohol Group Acceptor) - genetics Phosphotransferases (Alcohol Group Acceptor) - metabolism Plasmids PrfA protein Shigella flexneri Shigella flexneri - growth & development Trans-Activators - genetics Vacuoles - microbiology |
title | Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microinjection%20and%20Growth%20of%20Bacteria%20in%20the%20Cytosol%20of%20Mammalian%20Host%20Cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Goetz,%20Monika&rft.date=2001-10-09&rft.volume=98&rft.issue=21&rft.spage=12221&rft.epage=12226&rft.pages=12221-12226&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.211106398&rft_dat=%3Cjstor_proqu%3E3056876%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201367240&rft_id=info:pmid/11572936&rft_jstor_id=3056876&rfr_iscdi=true |