Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells

Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2001-10, Vol.98 (21), p.12221-12226
Hauptverfasser: Goetz, Monika, Bubert, Andreas, Wang, Gefu, Chico-Calero, Isabel, Vazquez-Boland, Jose-Antonio, Beck, Markus, Slaghuis, Joerg, Szalay, Aladar A., Goebel, Werner
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12226
container_issue 21
container_start_page 12221
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 98
creator Goetz, Monika
Bubert, Andreas
Wang, Gefu
Chico-Calero, Isabel
Vazquez-Boland, Jose-Antonio
Beck, Markus
Slaghuis, Joerg
Szalay, Aladar A.
Goebel, Werner
description Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.
doi_str_mv 10.1073/pnas.211106398
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201367240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3056876</jstor_id><sourcerecordid>3056876</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</originalsourceid><addsrcrecordid>eNqF0c-PEyEUB3BiNG539erJ6MSD8TL1AcMAyV600V2TbrzombyZMpZmChUYdf_7pWmtPw56guR9HuG9LyFPKMwpSP565zHNGaUUWq7VPTKjoGndNhrukxkAk7VqWHNGzlPaAIAWCh6SM0qFZJq3M7K8cX0Mzm9sn13wFfpVdRXD97yuwlC9xT7b6LByvsprWy1uc0hh3JducLvF0aGvrkPK1cKOY3pEHgw4Jvv4eF6Qz-_ffVpc18uPVx8Wb5Z1Lxjk2g6ig5WUKLXlSklQDUohKB90B1J1A5MIEjmCaBvoONIBGFrBObbltuIX5PLw7m7qtnbVW58jjmYX3RbjrQnozJ8V79bmS_hmhJZalPaXx_YYvk42ZbN1qS8DoLdhSkYyqhoJzX8hVRQE17rAF3_BTZiiLzswDChvJWugoPkBlYWnFO1w-jAFsw_T7MM0pzBLw7Pfx_zFj-kV8PwI9o0_y1qVNwxljNEiXv1bmGEax2x_5EKfHugm5RBPlpcQlGz5Heibu6M</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201367240</pqid></control><display><type>article</type><title>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Goetz, Monika ; Bubert, Andreas ; Wang, Gefu ; Chico-Calero, Isabel ; Vazquez-Boland, Jose-Antonio ; Beck, Markus ; Slaghuis, Joerg ; Szalay, Aladar A. ; Goebel, Werner</creator><creatorcontrib>Goetz, Monika ; Bubert, Andreas ; Wang, Gefu ; Chico-Calero, Isabel ; Vazquez-Boland, Jose-Antonio ; Beck, Markus ; Slaghuis, Joerg ; Szalay, Aladar A. ; Goebel, Werner</creatorcontrib><description>Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.211106398</identifier><identifier>PMID: 11572936</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Apoptosis ; Bacteria ; Bacterial Proteins - genetics ; Biological Sciences ; Caco 2 cells ; Cell growth ; Cells ; Cultured cells ; Cytosol ; Cytosol - metabolism ; Cytosol - microbiology ; Epithelial cells ; Escherichia coli ; Escherichia coli - growth &amp; development ; Genes, Bacterial ; Hepatocytes ; hpp gene ; Humans ; Listeria monocytogenes ; Listeria monocytogenes - growth &amp; development ; Mammals ; Microbiology ; Microinjections ; Microinjections - methods ; Peptide Termination Factors ; Phosphorylation ; Phosphotransferases (Alcohol Group Acceptor) - genetics ; Phosphotransferases (Alcohol Group Acceptor) - metabolism ; Plasmids ; PrfA protein ; Shigella flexneri ; Shigella flexneri - growth &amp; development ; Trans-Activators - genetics ; Vacuoles - microbiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2001-10, Vol.98 (21), p.12221-12226</ispartof><rights>Copyright 1993-2001 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Oct 9, 2001</rights><rights>Copyright © 2001, The National Academy of Sciences 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</citedby><cites>FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/98/21.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3056876$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3056876$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11572936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Goetz, Monika</creatorcontrib><creatorcontrib>Bubert, Andreas</creatorcontrib><creatorcontrib>Wang, Gefu</creatorcontrib><creatorcontrib>Chico-Calero, Isabel</creatorcontrib><creatorcontrib>Vazquez-Boland, Jose-Antonio</creatorcontrib><creatorcontrib>Beck, Markus</creatorcontrib><creatorcontrib>Slaghuis, Joerg</creatorcontrib><creatorcontrib>Szalay, Aladar A.</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><title>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.</description><subject>Animals</subject><subject>Apoptosis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Biological Sciences</subject><subject>Caco 2 cells</subject><subject>Cell growth</subject><subject>Cells</subject><subject>Cultured cells</subject><subject>Cytosol</subject><subject>Cytosol - metabolism</subject><subject>Cytosol - microbiology</subject><subject>Epithelial cells</subject><subject>Escherichia coli</subject><subject>Escherichia coli - growth &amp; development</subject><subject>Genes, Bacterial</subject><subject>Hepatocytes</subject><subject>hpp gene</subject><subject>Humans</subject><subject>Listeria monocytogenes</subject><subject>Listeria monocytogenes - growth &amp; development</subject><subject>Mammals</subject><subject>Microbiology</subject><subject>Microinjections</subject><subject>Microinjections - methods</subject><subject>Peptide Termination Factors</subject><subject>Phosphorylation</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - genetics</subject><subject>Phosphotransferases (Alcohol Group Acceptor) - metabolism</subject><subject>Plasmids</subject><subject>PrfA protein</subject><subject>Shigella flexneri</subject><subject>Shigella flexneri - growth &amp; development</subject><subject>Trans-Activators - genetics</subject><subject>Vacuoles - microbiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c-PEyEUB3BiNG539erJ6MSD8TL1AcMAyV600V2TbrzombyZMpZmChUYdf_7pWmtPw56guR9HuG9LyFPKMwpSP565zHNGaUUWq7VPTKjoGndNhrukxkAk7VqWHNGzlPaAIAWCh6SM0qFZJq3M7K8cX0Mzm9sn13wFfpVdRXD97yuwlC9xT7b6LByvsprWy1uc0hh3JducLvF0aGvrkPK1cKOY3pEHgw4Jvv4eF6Qz-_ffVpc18uPVx8Wb5Z1Lxjk2g6ig5WUKLXlSklQDUohKB90B1J1A5MIEjmCaBvoONIBGFrBObbltuIX5PLw7m7qtnbVW58jjmYX3RbjrQnozJ8V79bmS_hmhJZalPaXx_YYvk42ZbN1qS8DoLdhSkYyqhoJzX8hVRQE17rAF3_BTZiiLzswDChvJWugoPkBlYWnFO1w-jAFsw_T7MM0pzBLw7Pfx_zFj-kV8PwI9o0_y1qVNwxljNEiXv1bmGEax2x_5EKfHugm5RBPlpcQlGz5Heibu6M</recordid><startdate>20011009</startdate><enddate>20011009</enddate><creator>Goetz, Monika</creator><creator>Bubert, Andreas</creator><creator>Wang, Gefu</creator><creator>Chico-Calero, Isabel</creator><creator>Vazquez-Boland, Jose-Antonio</creator><creator>Beck, Markus</creator><creator>Slaghuis, Joerg</creator><creator>Szalay, Aladar A.</creator><creator>Goebel, Werner</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20011009</creationdate><title>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</title><author>Goetz, Monika ; Bubert, Andreas ; Wang, Gefu ; Chico-Calero, Isabel ; Vazquez-Boland, Jose-Antonio ; Beck, Markus ; Slaghuis, Joerg ; Szalay, Aladar A. ; Goebel, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-ef5b0d77a79e3887084a75513f9b078bf27a07a3a05640b3a1f02ae533a6f02d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Animals</topic><topic>Apoptosis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Biological Sciences</topic><topic>Caco 2 cells</topic><topic>Cell growth</topic><topic>Cells</topic><topic>Cultured cells</topic><topic>Cytosol</topic><topic>Cytosol - metabolism</topic><topic>Cytosol - microbiology</topic><topic>Epithelial cells</topic><topic>Escherichia coli</topic><topic>Escherichia coli - growth &amp; development</topic><topic>Genes, Bacterial</topic><topic>Hepatocytes</topic><topic>hpp gene</topic><topic>Humans</topic><topic>Listeria monocytogenes</topic><topic>Listeria monocytogenes - growth &amp; development</topic><topic>Mammals</topic><topic>Microbiology</topic><topic>Microinjections</topic><topic>Microinjections - methods</topic><topic>Peptide Termination Factors</topic><topic>Phosphorylation</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - genetics</topic><topic>Phosphotransferases (Alcohol Group Acceptor) - metabolism</topic><topic>Plasmids</topic><topic>PrfA protein</topic><topic>Shigella flexneri</topic><topic>Shigella flexneri - growth &amp; development</topic><topic>Trans-Activators - genetics</topic><topic>Vacuoles - microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goetz, Monika</creatorcontrib><creatorcontrib>Bubert, Andreas</creatorcontrib><creatorcontrib>Wang, Gefu</creatorcontrib><creatorcontrib>Chico-Calero, Isabel</creatorcontrib><creatorcontrib>Vazquez-Boland, Jose-Antonio</creatorcontrib><creatorcontrib>Beck, Markus</creatorcontrib><creatorcontrib>Slaghuis, Joerg</creatorcontrib><creatorcontrib>Szalay, Aladar A.</creatorcontrib><creatorcontrib>Goebel, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goetz, Monika</au><au>Bubert, Andreas</au><au>Wang, Gefu</au><au>Chico-Calero, Isabel</au><au>Vazquez-Boland, Jose-Antonio</au><au>Beck, Markus</au><au>Slaghuis, Joerg</au><au>Szalay, Aladar A.</au><au>Goebel, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2001-10-09</date><risdate>2001</risdate><volume>98</volume><issue>21</issue><spage>12221</spage><epage>12226</epage><pages>12221-12226</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Most facultative intracellular bacteria replicate in specialized phagosomes after being taken up by mammalian cells. Relatively few intracellular bacteria escape the phagosomal compartment with the help of cytolytic (pore-forming) proteins and replicate in the host cell cytosol. Without such toxins, intracellular bacteria cannot reach this cellular compartment. To circumvent the requirement of an "escape" step, we developed a procedure allowing the efficient direct injection of bacteria into the cytosol of mammalian cells. With this technique, we show that most bacteria, including extracellular bacteria and intracellular pathogens that normally reside in a vacuole, are unable to replicate in the cytosol of the mammalian cells. In contrast, microorganisms that replicate in the cytosol, such as Listeria monocytogenes, Shigella flexneri, and, to some extent, enteroinvasive Escherichia coli, are able to multiply in this cellular compartment after microinjection. Further L. monocytogenes with deletion in its PrfA-regulated hpt gene was found to be impaired in replication when injected into the cytosol. Complementation of the hpt mutation with a plasmid carrying the wild-type hpt gene restored the replication ability in the cytosol. These data indicate that cytosolic intracellular pathogens have evolved specific mechanisms to grow in this compartment of mammalian cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>11572936</pmid><doi>10.1073/pnas.211106398</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2001-10, Vol.98 (21), p.12221-12226
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201367240
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Apoptosis
Bacteria
Bacterial Proteins - genetics
Biological Sciences
Caco 2 cells
Cell growth
Cells
Cultured cells
Cytosol
Cytosol - metabolism
Cytosol - microbiology
Epithelial cells
Escherichia coli
Escherichia coli - growth & development
Genes, Bacterial
Hepatocytes
hpp gene
Humans
Listeria monocytogenes
Listeria monocytogenes - growth & development
Mammals
Microbiology
Microinjections
Microinjections - methods
Peptide Termination Factors
Phosphorylation
Phosphotransferases (Alcohol Group Acceptor) - genetics
Phosphotransferases (Alcohol Group Acceptor) - metabolism
Plasmids
PrfA protein
Shigella flexneri
Shigella flexneri - growth & development
Trans-Activators - genetics
Vacuoles - microbiology
title Microinjection and Growth of Bacteria in the Cytosol of Mammalian Host Cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microinjection%20and%20Growth%20of%20Bacteria%20in%20the%20Cytosol%20of%20Mammalian%20Host%20Cells&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Goetz,%20Monika&rft.date=2001-10-09&rft.volume=98&rft.issue=21&rft.spage=12221&rft.epage=12226&rft.pages=12221-12226&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.211106398&rft_dat=%3Cjstor_proqu%3E3056876%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201367240&rft_id=info:pmid/11572936&rft_jstor_id=3056876&rfr_iscdi=true