Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice
Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species,...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (50), p.19944-19949 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19949 |
---|---|
container_issue | 50 |
container_start_page | 19944 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Becker, Michelle M Graham, Rachel L Donaldson, Eric F Rockx, Barry Sims, Amy C Sheahan, Timothy Pickles, Raymond J Corti, Davide Johnston, Robert E Baric, Ralph S Denison, Mark R |
description | Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats. |
doi_str_mv | 10.1073/pnas.0808116105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201365160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465753</jstor_id><sourcerecordid>25465753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modq2ePamDB8HDtC-TSSa5CKX4CwqCa08eQiaTtFlnkm2SKfa_N8MuXfVSCIS893lf3jdfhF5iOMHQkdOtV-kEOHCMGQb6CK0wCFyzVsBjtAJoupq3TXuEnqW0AQBBOTxFR1gAYYLACv1c3_l8bbLTVTQ6TL3zyueqV7lan31f16P7ZSodYvDq1sU5Va4cb43OLiwvX-l5zHM0Q6XNOKZK-WGpTk6b5-iJVWMyL_b3Mbr89PHH-Zf64tvnr-dnF7VmDeR6aBoB3II1xLRY9aRRlolBt8UR59r2jLacmLIz6zuOe24t54O2SogOKOHkGH3Y6W7nfjKDNj5HNcptdJOKdzIoJ__teHctr8KtbCjnLaZF4N1eIIab2aQsJ5cWO8qb4lIyIQBIIx4EGyheKF8U3_4HbsIcffmFwmDCKGZQoNMdpGNIKRp7vzIGucQrl3jlId4y8fpvpwd-n2cB3u-BZfIgRyUtkkK0rbTzOGbzOxe2eoAtyKsdskk5xHumoS2jHSWl_2bXtypIdRVdkpfrxSBg2mHOGPkDMTXMpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201365160</pqid></control><display><type>article</type><title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Becker, Michelle M ; Graham, Rachel L ; Donaldson, Eric F ; Rockx, Barry ; Sims, Amy C ; Sheahan, Timothy ; Pickles, Raymond J ; Corti, Davide ; Johnston, Robert E ; Baric, Ralph S ; Denison, Mark R</creator><creatorcontrib>Becker, Michelle M ; Graham, Rachel L ; Donaldson, Eric F ; Rockx, Barry ; Sims, Amy C ; Sheahan, Timothy ; Pickles, Raymond J ; Corti, Davide ; Johnston, Robert E ; Baric, Ralph S ; Denison, Mark R</creatorcontrib><description>Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0808116105</identifier><identifier>PMID: 19036930</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Biological Sciences ; Cell culture ; Cells, Cultured ; Cercopithecus aethiops ; Chiroptera - virology ; Cloning ; Complementary DNA ; Coronavirus ; Female ; Genomes ; Genomics ; Humans ; Membrane Glycoproteins - genetics ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Proteins ; Recombinant Proteins - genetics ; Recombination, Genetic ; Respiratory Mucosa - virology ; Rodents ; SARS coronavirus ; SARS virus ; SARS Virus - genetics ; SARS Virus - isolation & purification ; SARS Virus - physiology ; Severe acute respiratory syndrome ; Severe Acute Respiratory Syndrome - virology ; Signal transduction ; Spike Glycoprotein, Coronavirus ; Vero Cells ; Viral Envelope Proteins - genetics ; Virus Replication ; Viruses ; Zoonoses ; Zoonoses - transmission ; Zoonoses - virology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (50), p.19944-19949</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 16, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</citedby><cites>FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465753$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465753$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19036930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Michelle M</creatorcontrib><creatorcontrib>Graham, Rachel L</creatorcontrib><creatorcontrib>Donaldson, Eric F</creatorcontrib><creatorcontrib>Rockx, Barry</creatorcontrib><creatorcontrib>Sims, Amy C</creatorcontrib><creatorcontrib>Sheahan, Timothy</creatorcontrib><creatorcontrib>Pickles, Raymond J</creatorcontrib><creatorcontrib>Corti, Davide</creatorcontrib><creatorcontrib>Johnston, Robert E</creatorcontrib><creatorcontrib>Baric, Ralph S</creatorcontrib><creatorcontrib>Denison, Mark R</creatorcontrib><title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>Chiroptera - virology</subject><subject>Cloning</subject><subject>Complementary DNA</subject><subject>Coronavirus</subject><subject>Female</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Molecular Sequence Data</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombination, Genetic</subject><subject>Respiratory Mucosa - virology</subject><subject>Rodents</subject><subject>SARS coronavirus</subject><subject>SARS virus</subject><subject>SARS Virus - genetics</subject><subject>SARS Virus - isolation & purification</subject><subject>SARS Virus - physiology</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe Acute Respiratory Syndrome - virology</subject><subject>Signal transduction</subject><subject>Spike Glycoprotein, Coronavirus</subject><subject>Vero Cells</subject><subject>Viral Envelope Proteins - genetics</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>Zoonoses</subject><subject>Zoonoses - transmission</subject><subject>Zoonoses - virology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modq2ePamDB8HDtC-TSSa5CKX4CwqCa08eQiaTtFlnkm2SKfa_N8MuXfVSCIS893lf3jdfhF5iOMHQkdOtV-kEOHCMGQb6CK0wCFyzVsBjtAJoupq3TXuEnqW0AQBBOTxFR1gAYYLACv1c3_l8bbLTVTQ6TL3zyueqV7lan31f16P7ZSodYvDq1sU5Va4cb43OLiwvX-l5zHM0Q6XNOKZK-WGpTk6b5-iJVWMyL_b3Mbr89PHH-Zf64tvnr-dnF7VmDeR6aBoB3II1xLRY9aRRlolBt8UR59r2jLacmLIz6zuOe24t54O2SogOKOHkGH3Y6W7nfjKDNj5HNcptdJOKdzIoJ__teHctr8KtbCjnLaZF4N1eIIab2aQsJ5cWO8qb4lIyIQBIIx4EGyheKF8U3_4HbsIcffmFwmDCKGZQoNMdpGNIKRp7vzIGucQrl3jlId4y8fpvpwd-n2cB3u-BZfIgRyUtkkK0rbTzOGbzOxe2eoAtyKsdskk5xHumoS2jHSWl_2bXtypIdRVdkpfrxSBg2mHOGPkDMTXMpQ</recordid><startdate>20081216</startdate><enddate>20081216</enddate><creator>Becker, Michelle M</creator><creator>Graham, Rachel L</creator><creator>Donaldson, Eric F</creator><creator>Rockx, Barry</creator><creator>Sims, Amy C</creator><creator>Sheahan, Timothy</creator><creator>Pickles, Raymond J</creator><creator>Corti, Davide</creator><creator>Johnston, Robert E</creator><creator>Baric, Ralph S</creator><creator>Denison, Mark R</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081216</creationdate><title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</title><author>Becker, Michelle M ; Graham, Rachel L ; Donaldson, Eric F ; Rockx, Barry ; Sims, Amy C ; Sheahan, Timothy ; Pickles, Raymond J ; Corti, Davide ; Johnston, Robert E ; Baric, Ralph S ; Denison, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>Chiroptera - virology</topic><topic>Cloning</topic><topic>Complementary DNA</topic><topic>Coronavirus</topic><topic>Female</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Molecular Sequence Data</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombination, Genetic</topic><topic>Respiratory Mucosa - virology</topic><topic>Rodents</topic><topic>SARS coronavirus</topic><topic>SARS virus</topic><topic>SARS Virus - genetics</topic><topic>SARS Virus - isolation & purification</topic><topic>SARS Virus - physiology</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe Acute Respiratory Syndrome - virology</topic><topic>Signal transduction</topic><topic>Spike Glycoprotein, Coronavirus</topic><topic>Vero Cells</topic><topic>Viral Envelope Proteins - genetics</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>Zoonoses</topic><topic>Zoonoses - transmission</topic><topic>Zoonoses - virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Michelle M</creatorcontrib><creatorcontrib>Graham, Rachel L</creatorcontrib><creatorcontrib>Donaldson, Eric F</creatorcontrib><creatorcontrib>Rockx, Barry</creatorcontrib><creatorcontrib>Sims, Amy C</creatorcontrib><creatorcontrib>Sheahan, Timothy</creatorcontrib><creatorcontrib>Pickles, Raymond J</creatorcontrib><creatorcontrib>Corti, Davide</creatorcontrib><creatorcontrib>Johnston, Robert E</creatorcontrib><creatorcontrib>Baric, Ralph S</creatorcontrib><creatorcontrib>Denison, Mark R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Michelle M</au><au>Graham, Rachel L</au><au>Donaldson, Eric F</au><au>Rockx, Barry</au><au>Sims, Amy C</au><au>Sheahan, Timothy</au><au>Pickles, Raymond J</au><au>Corti, Davide</au><au>Johnston, Robert E</au><au>Baric, Ralph S</au><au>Denison, Mark R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-16</date><risdate>2008</risdate><volume>105</volume><issue>50</issue><spage>19944</spage><epage>19949</epage><pages>19944-19949</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19036930</pmid><doi>10.1073/pnas.0808116105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (50), p.19944-19949 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201365160 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Amino acids Animals Biological Sciences Cell culture Cells, Cultured Cercopithecus aethiops Chiroptera - virology Cloning Complementary DNA Coronavirus Female Genomes Genomics Humans Membrane Glycoproteins - genetics Mice Mice, Inbred BALB C Molecular Sequence Data Proteins Recombinant Proteins - genetics Recombination, Genetic Respiratory Mucosa - virology Rodents SARS coronavirus SARS virus SARS Virus - genetics SARS Virus - isolation & purification SARS Virus - physiology Severe acute respiratory syndrome Severe Acute Respiratory Syndrome - virology Signal transduction Spike Glycoprotein, Coronavirus Vero Cells Viral Envelope Proteins - genetics Virus Replication Viruses Zoonoses Zoonoses - transmission Zoonoses - virology |
title | Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20recombinant%20bat%20SARS-like%20coronavirus%20is%20infectious%20in%20cultured%20cells%20and%20in%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Becker,%20Michelle%20M&rft.date=2008-12-16&rft.volume=105&rft.issue=50&rft.spage=19944&rft.epage=19949&rft.pages=19944-19949&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0808116105&rft_dat=%3Cjstor_proqu%3E25465753%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201365160&rft_id=info:pmid/19036930&rft_jstor_id=25465753&rfr_iscdi=true |