Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice

Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2008-12, Vol.105 (50), p.19944-19949
Hauptverfasser: Becker, Michelle M, Graham, Rachel L, Donaldson, Eric F, Rockx, Barry, Sims, Amy C, Sheahan, Timothy, Pickles, Raymond J, Corti, Davide, Johnston, Robert E, Baric, Ralph S, Denison, Mark R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 19949
container_issue 50
container_start_page 19944
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 105
creator Becker, Michelle M
Graham, Rachel L
Donaldson, Eric F
Rockx, Barry
Sims, Amy C
Sheahan, Timothy
Pickles, Raymond J
Corti, Davide
Johnston, Robert E
Baric, Ralph S
Denison, Mark R
description Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.
doi_str_mv 10.1073/pnas.0808116105
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201365160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25465753</jstor_id><sourcerecordid>25465753</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</originalsourceid><addsrcrecordid>eNqFkc9rFDEUx4Modq2ePamDB8HDtC-TSSa5CKX4CwqCa08eQiaTtFlnkm2SKfa_N8MuXfVSCIS893lf3jdfhF5iOMHQkdOtV-kEOHCMGQb6CK0wCFyzVsBjtAJoupq3TXuEnqW0AQBBOTxFR1gAYYLACv1c3_l8bbLTVTQ6TL3zyueqV7lan31f16P7ZSodYvDq1sU5Va4cb43OLiwvX-l5zHM0Q6XNOKZK-WGpTk6b5-iJVWMyL_b3Mbr89PHH-Zf64tvnr-dnF7VmDeR6aBoB3II1xLRY9aRRlolBt8UR59r2jLacmLIz6zuOe24t54O2SogOKOHkGH3Y6W7nfjKDNj5HNcptdJOKdzIoJ__teHctr8KtbCjnLaZF4N1eIIab2aQsJ5cWO8qb4lIyIQBIIx4EGyheKF8U3_4HbsIcffmFwmDCKGZQoNMdpGNIKRp7vzIGucQrl3jlId4y8fpvpwd-n2cB3u-BZfIgRyUtkkK0rbTzOGbzOxe2eoAtyKsdskk5xHumoS2jHSWl_2bXtypIdRVdkpfrxSBg2mHOGPkDMTXMpQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201365160</pqid></control><display><type>article</type><title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Becker, Michelle M ; Graham, Rachel L ; Donaldson, Eric F ; Rockx, Barry ; Sims, Amy C ; Sheahan, Timothy ; Pickles, Raymond J ; Corti, Davide ; Johnston, Robert E ; Baric, Ralph S ; Denison, Mark R</creator><creatorcontrib>Becker, Michelle M ; Graham, Rachel L ; Donaldson, Eric F ; Rockx, Barry ; Sims, Amy C ; Sheahan, Timothy ; Pickles, Raymond J ; Corti, Davide ; Johnston, Robert E ; Baric, Ralph S ; Denison, Mark R</creatorcontrib><description>Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0808116105</identifier><identifier>PMID: 19036930</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Biological Sciences ; Cell culture ; Cells, Cultured ; Cercopithecus aethiops ; Chiroptera - virology ; Cloning ; Complementary DNA ; Coronavirus ; Female ; Genomes ; Genomics ; Humans ; Membrane Glycoproteins - genetics ; Mice ; Mice, Inbred BALB C ; Molecular Sequence Data ; Proteins ; Recombinant Proteins - genetics ; Recombination, Genetic ; Respiratory Mucosa - virology ; Rodents ; SARS coronavirus ; SARS virus ; SARS Virus - genetics ; SARS Virus - isolation &amp; purification ; SARS Virus - physiology ; Severe acute respiratory syndrome ; Severe Acute Respiratory Syndrome - virology ; Signal transduction ; Spike Glycoprotein, Coronavirus ; Vero Cells ; Viral Envelope Proteins - genetics ; Virus Replication ; Viruses ; Zoonoses ; Zoonoses - transmission ; Zoonoses - virology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (50), p.19944-19949</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 16, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</citedby><cites>FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25465753$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25465753$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19036930$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Becker, Michelle M</creatorcontrib><creatorcontrib>Graham, Rachel L</creatorcontrib><creatorcontrib>Donaldson, Eric F</creatorcontrib><creatorcontrib>Rockx, Barry</creatorcontrib><creatorcontrib>Sims, Amy C</creatorcontrib><creatorcontrib>Sheahan, Timothy</creatorcontrib><creatorcontrib>Pickles, Raymond J</creatorcontrib><creatorcontrib>Corti, Davide</creatorcontrib><creatorcontrib>Johnston, Robert E</creatorcontrib><creatorcontrib>Baric, Ralph S</creatorcontrib><creatorcontrib>Denison, Mark R</creatorcontrib><title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Cell culture</subject><subject>Cells, Cultured</subject><subject>Cercopithecus aethiops</subject><subject>Chiroptera - virology</subject><subject>Cloning</subject><subject>Complementary DNA</subject><subject>Coronavirus</subject><subject>Female</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Humans</subject><subject>Membrane Glycoproteins - genetics</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Molecular Sequence Data</subject><subject>Proteins</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombination, Genetic</subject><subject>Respiratory Mucosa - virology</subject><subject>Rodents</subject><subject>SARS coronavirus</subject><subject>SARS virus</subject><subject>SARS Virus - genetics</subject><subject>SARS Virus - isolation &amp; purification</subject><subject>SARS Virus - physiology</subject><subject>Severe acute respiratory syndrome</subject><subject>Severe Acute Respiratory Syndrome - virology</subject><subject>Signal transduction</subject><subject>Spike Glycoprotein, Coronavirus</subject><subject>Vero Cells</subject><subject>Viral Envelope Proteins - genetics</subject><subject>Virus Replication</subject><subject>Viruses</subject><subject>Zoonoses</subject><subject>Zoonoses - transmission</subject><subject>Zoonoses - virology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc9rFDEUx4Modq2ePamDB8HDtC-TSSa5CKX4CwqCa08eQiaTtFlnkm2SKfa_N8MuXfVSCIS893lf3jdfhF5iOMHQkdOtV-kEOHCMGQb6CK0wCFyzVsBjtAJoupq3TXuEnqW0AQBBOTxFR1gAYYLACv1c3_l8bbLTVTQ6TL3zyueqV7lan31f16P7ZSodYvDq1sU5Va4cb43OLiwvX-l5zHM0Q6XNOKZK-WGpTk6b5-iJVWMyL_b3Mbr89PHH-Zf64tvnr-dnF7VmDeR6aBoB3II1xLRY9aRRlolBt8UR59r2jLacmLIz6zuOe24t54O2SogOKOHkGH3Y6W7nfjKDNj5HNcptdJOKdzIoJ__teHctr8KtbCjnLaZF4N1eIIab2aQsJ5cWO8qb4lIyIQBIIx4EGyheKF8U3_4HbsIcffmFwmDCKGZQoNMdpGNIKRp7vzIGucQrl3jlId4y8fpvpwd-n2cB3u-BZfIgRyUtkkK0rbTzOGbzOxe2eoAtyKsdskk5xHumoS2jHSWl_2bXtypIdRVdkpfrxSBg2mHOGPkDMTXMpQ</recordid><startdate>20081216</startdate><enddate>20081216</enddate><creator>Becker, Michelle M</creator><creator>Graham, Rachel L</creator><creator>Donaldson, Eric F</creator><creator>Rockx, Barry</creator><creator>Sims, Amy C</creator><creator>Sheahan, Timothy</creator><creator>Pickles, Raymond J</creator><creator>Corti, Davide</creator><creator>Johnston, Robert E</creator><creator>Baric, Ralph S</creator><creator>Denison, Mark R</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081216</creationdate><title>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</title><author>Becker, Michelle M ; Graham, Rachel L ; Donaldson, Eric F ; Rockx, Barry ; Sims, Amy C ; Sheahan, Timothy ; Pickles, Raymond J ; Corti, Davide ; Johnston, Robert E ; Baric, Ralph S ; Denison, Mark R</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-d22908f0fe3e41ab32af69dc461088cfb65483e1906b781b8ff88dcfa99705383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Cell culture</topic><topic>Cells, Cultured</topic><topic>Cercopithecus aethiops</topic><topic>Chiroptera - virology</topic><topic>Cloning</topic><topic>Complementary DNA</topic><topic>Coronavirus</topic><topic>Female</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Humans</topic><topic>Membrane Glycoproteins - genetics</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Molecular Sequence Data</topic><topic>Proteins</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombination, Genetic</topic><topic>Respiratory Mucosa - virology</topic><topic>Rodents</topic><topic>SARS coronavirus</topic><topic>SARS virus</topic><topic>SARS Virus - genetics</topic><topic>SARS Virus - isolation &amp; purification</topic><topic>SARS Virus - physiology</topic><topic>Severe acute respiratory syndrome</topic><topic>Severe Acute Respiratory Syndrome - virology</topic><topic>Signal transduction</topic><topic>Spike Glycoprotein, Coronavirus</topic><topic>Vero Cells</topic><topic>Viral Envelope Proteins - genetics</topic><topic>Virus Replication</topic><topic>Viruses</topic><topic>Zoonoses</topic><topic>Zoonoses - transmission</topic><topic>Zoonoses - virology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Becker, Michelle M</creatorcontrib><creatorcontrib>Graham, Rachel L</creatorcontrib><creatorcontrib>Donaldson, Eric F</creatorcontrib><creatorcontrib>Rockx, Barry</creatorcontrib><creatorcontrib>Sims, Amy C</creatorcontrib><creatorcontrib>Sheahan, Timothy</creatorcontrib><creatorcontrib>Pickles, Raymond J</creatorcontrib><creatorcontrib>Corti, Davide</creatorcontrib><creatorcontrib>Johnston, Robert E</creatorcontrib><creatorcontrib>Baric, Ralph S</creatorcontrib><creatorcontrib>Denison, Mark R</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Becker, Michelle M</au><au>Graham, Rachel L</au><au>Donaldson, Eric F</au><au>Rockx, Barry</au><au>Sims, Amy C</au><au>Sheahan, Timothy</au><au>Pickles, Raymond J</au><au>Corti, Davide</au><au>Johnston, Robert E</au><au>Baric, Ralph S</au><au>Denison, Mark R</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-12-16</date><risdate>2008</risdate><volume>105</volume><issue>50</issue><spage>19944</spage><epage>19949</epage><pages>19944-19949</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Defining prospective pathways by which zoonoses evolve and emerge as human pathogens is critical for anticipating and controlling both natural and deliberate pandemics. However, predicting tenable pathways of animal-to-human movement has been hindered by challenges in identifying reservoir species, cultivating zoonotic organisms in culture, and isolating full-length genomes for cloning and genetic studies. The ability to design and recover pathogens reconstituted from synthesized cDNAs has the potential to overcome these obstacles by allowing studies of replication and pathogenesis without identification of reservoir species or cultivation of primary isolates. Here, we report the design, synthesis, and recovery of the largest synthetic replicating life form, a 29.7-kb bat severe acute respiratory syndrome (SARS)-like coronavirus (Bat-SCoV), a likely progenitor to the SARS-CoV epidemic. To test a possible route of emergence from the noncultivable Bat-SCoV to human SARS-CoV, we designed a consensus Bat-SCoV genome and replaced the Bat-SCoV Spike receptor-binding domain (RBD) with the SARS-CoV RBD (Bat-SRBD). Bat-SRBD was infectious in cell culture and in mice and was efficiently neutralized by antibodies specific for both bat and human CoV Spike proteins. Rational design, synthesis, and recovery of hypothetical recombinant viruses can be used to investigate mechanisms of transspecies movement of zoonoses and has great potential to aid in rapid public health responses to known or predicted emerging microbial threats.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19036930</pmid><doi>10.1073/pnas.0808116105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2008-12, Vol.105 (50), p.19944-19949
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201365160
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino acids
Animals
Biological Sciences
Cell culture
Cells, Cultured
Cercopithecus aethiops
Chiroptera - virology
Cloning
Complementary DNA
Coronavirus
Female
Genomes
Genomics
Humans
Membrane Glycoproteins - genetics
Mice
Mice, Inbred BALB C
Molecular Sequence Data
Proteins
Recombinant Proteins - genetics
Recombination, Genetic
Respiratory Mucosa - virology
Rodents
SARS coronavirus
SARS virus
SARS Virus - genetics
SARS Virus - isolation & purification
SARS Virus - physiology
Severe acute respiratory syndrome
Severe Acute Respiratory Syndrome - virology
Signal transduction
Spike Glycoprotein, Coronavirus
Vero Cells
Viral Envelope Proteins - genetics
Virus Replication
Viruses
Zoonoses
Zoonoses - transmission
Zoonoses - virology
title Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthetic%20recombinant%20bat%20SARS-like%20coronavirus%20is%20infectious%20in%20cultured%20cells%20and%20in%20mice&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Becker,%20Michelle%20M&rft.date=2008-12-16&rft.volume=105&rft.issue=50&rft.spage=19944&rft.epage=19949&rft.pages=19944-19949&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0808116105&rft_dat=%3Cjstor_proqu%3E25465753%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201365160&rft_id=info:pmid/19036930&rft_jstor_id=25465753&rfr_iscdi=true