Mechanical Switching and Coupling between Two Dissociation Pathways in a P-Selectin Adhesion Bond

Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2004-08, Vol.101 (31), p.11281-11286
Hauptverfasser: Evans, Evan, Leung, Andrew, Heinrich, Volkmar, Zhu, Cheng, Spudich, James A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11286
container_issue 31
container_start_page 11281
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 101
creator Evans, Evan
Leung, Andrew
Heinrich, Volkmar
Zhu, Cheng
Spudich, James A.
description Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisXproduces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.
doi_str_mv 10.1073/pnas.0401870101
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201355273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3372767</jstor_id><sourcerecordid>3372767</sourcerecordid><originalsourceid>FETCH-LOGICAL-c561t-d2a01e668d874fcb64f3e60f65db8aead9af4d4786630cfe61d2bc7af96ff55a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS0EokNhzQYhiwUSi7R2HNvJgkUZnlIRlVrW1h0_Go8y9hA7DP33OJpRB9iwsq78nePrcxB6TskZJZKdbwOkM9IQ2kpCCX2AFpR0tBJNRx6iBSG1rNqmbk7Qk5TWhJCOt-QxOqG8llJIvkDw1eoegtcw4Oudz7r34RZDMHgZp-0wDyubd9YGfLOL-L1PKWoP2ceAryD3O7hL2AcM-Kq6toPVuQwXprdpJt7FYJ6iRw6GZJ8dzlP0_eOHm-Xn6vLbpy_Li8tKc0FzZWog1ArRmlY2Tq9E45gVxAluVi1YMB24xjSyFYIR7aygpl5pCa4TznEO7BS93ftup9XGGm1DHmFQ29FvYLxTEbz6-yb4Xt3Gn4qXxDpe9K8P-jH-mGzKauOTtsMAwcYpKVHy4m1XF_DVP-A6TmMof1M1oYyXbFmBzveQHmNKo3X3i1Ci5urUXJ06VlcUL__c_8gfuioAPgCz8mhHFaOK0rqdPd78B1FuGoZsf-XCvtiz65TjeA8zJuvyHPsNzXa4ww</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201355273</pqid></control><display><type>article</type><title>Mechanical Switching and Coupling between Two Dissociation Pathways in a P-Selectin Adhesion Bond</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Evans, Evan ; Leung, Andrew ; Heinrich, Volkmar ; Zhu, Cheng ; Spudich, James A.</creator><creatorcontrib>Evans, Evan ; Leung, Andrew ; Heinrich, Volkmar ; Zhu, Cheng ; Spudich, James A.</creatorcontrib><description>Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisXproduces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0401870101</identifier><identifier>PMID: 15277675</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adhesion ; Adhesive bonding ; Biological Sciences ; Biophysics ; Bonds ; Force distribution ; Gangliosides - metabolism ; Histograms ; Hydrogen bonds ; Kinetics ; Ligands ; Loading rate ; Mechanical engineering ; Membrane Glycoproteins - metabolism ; Models, Chemical ; P-Selectin - chemistry ; P-Selectin - metabolism ; Protein Binding - physiology ; Protein Structure, Tertiary ; Selectins ; Spring constant ; Switching ; Tissue Adhesions</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (31), p.11281-11286</ispartof><rights>Copyright 1993/2004 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Aug 3, 2004</rights><rights>Copyright © 2004, The National Academy of Sciences 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c561t-d2a01e668d874fcb64f3e60f65db8aead9af4d4786630cfe61d2bc7af96ff55a3</citedby><cites>FETCH-LOGICAL-c561t-d2a01e668d874fcb64f3e60f65db8aead9af4d4786630cfe61d2bc7af96ff55a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/101/31.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3372767$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3372767$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15277675$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Evans, Evan</creatorcontrib><creatorcontrib>Leung, Andrew</creatorcontrib><creatorcontrib>Heinrich, Volkmar</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Spudich, James A.</creatorcontrib><title>Mechanical Switching and Coupling between Two Dissociation Pathways in a P-Selectin Adhesion Bond</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisXproduces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.</description><subject>Adhesion</subject><subject>Adhesive bonding</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Bonds</subject><subject>Force distribution</subject><subject>Gangliosides - metabolism</subject><subject>Histograms</subject><subject>Hydrogen bonds</subject><subject>Kinetics</subject><subject>Ligands</subject><subject>Loading rate</subject><subject>Mechanical engineering</subject><subject>Membrane Glycoproteins - metabolism</subject><subject>Models, Chemical</subject><subject>P-Selectin - chemistry</subject><subject>P-Selectin - metabolism</subject><subject>Protein Binding - physiology</subject><subject>Protein Structure, Tertiary</subject><subject>Selectins</subject><subject>Spring constant</subject><subject>Switching</subject><subject>Tissue Adhesions</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1DAUhS0EokNhzQYhiwUSi7R2HNvJgkUZnlIRlVrW1h0_Go8y9hA7DP33OJpRB9iwsq78nePrcxB6TskZJZKdbwOkM9IQ2kpCCX2AFpR0tBJNRx6iBSG1rNqmbk7Qk5TWhJCOt-QxOqG8llJIvkDw1eoegtcw4Oudz7r34RZDMHgZp-0wDyubd9YGfLOL-L1PKWoP2ceAryD3O7hL2AcM-Kq6toPVuQwXprdpJt7FYJ6iRw6GZJ8dzlP0_eOHm-Xn6vLbpy_Li8tKc0FzZWog1ArRmlY2Tq9E45gVxAluVi1YMB24xjSyFYIR7aygpl5pCa4TznEO7BS93ftup9XGGm1DHmFQ29FvYLxTEbz6-yb4Xt3Gn4qXxDpe9K8P-jH-mGzKauOTtsMAwcYpKVHy4m1XF_DVP-A6TmMof1M1oYyXbFmBzveQHmNKo3X3i1Ci5urUXJ06VlcUL__c_8gfuioAPgCz8mhHFaOK0rqdPd78B1FuGoZsf-XCvtiz65TjeA8zJuvyHPsNzXa4ww</recordid><startdate>20040803</startdate><enddate>20040803</enddate><creator>Evans, Evan</creator><creator>Leung, Andrew</creator><creator>Heinrich, Volkmar</creator><creator>Zhu, Cheng</creator><creator>Spudich, James A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040803</creationdate><title>Mechanical Switching and Coupling between Two Dissociation Pathways in a P-Selectin Adhesion Bond</title><author>Evans, Evan ; Leung, Andrew ; Heinrich, Volkmar ; Zhu, Cheng ; Spudich, James A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c561t-d2a01e668d874fcb64f3e60f65db8aead9af4d4786630cfe61d2bc7af96ff55a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Adhesion</topic><topic>Adhesive bonding</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Bonds</topic><topic>Force distribution</topic><topic>Gangliosides - metabolism</topic><topic>Histograms</topic><topic>Hydrogen bonds</topic><topic>Kinetics</topic><topic>Ligands</topic><topic>Loading rate</topic><topic>Mechanical engineering</topic><topic>Membrane Glycoproteins - metabolism</topic><topic>Models, Chemical</topic><topic>P-Selectin - chemistry</topic><topic>P-Selectin - metabolism</topic><topic>Protein Binding - physiology</topic><topic>Protein Structure, Tertiary</topic><topic>Selectins</topic><topic>Spring constant</topic><topic>Switching</topic><topic>Tissue Adhesions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Evans, Evan</creatorcontrib><creatorcontrib>Leung, Andrew</creatorcontrib><creatorcontrib>Heinrich, Volkmar</creatorcontrib><creatorcontrib>Zhu, Cheng</creatorcontrib><creatorcontrib>Spudich, James A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Evans, Evan</au><au>Leung, Andrew</au><au>Heinrich, Volkmar</au><au>Zhu, Cheng</au><au>Spudich, James A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanical Switching and Coupling between Two Dissociation Pathways in a P-Selectin Adhesion Bond</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2004-08-03</date><risdate>2004</risdate><volume>101</volume><issue>31</issue><spage>11281</spage><epage>11286</epage><pages>11281-11286</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Many biomolecular bonds exhibit a mechanical strength that increases in proportion to the logarithm of the rate of force application. Consistent with exponential decrease in bond lifetime under rising force, this kinetically limited failure reflects dissociation along a single thermodynamic pathway impeded by a sharp free energy barrier. Using a sensitive force probe to test the leukocyte adhesion bond P-selectin glycoprotein ligand 1 (PSGL-1)-P-selectin, we observed a linear increase of bond strength with each 10-fold increase in the rate of force application from 300 to 30,000 pN/sec, implying a single pathway for failure. However, the strength and lifetime of PSGL-1-P-selectin bonds dropped anomalously when loaded below 300 pN/sec, demonstrating unexpectedly faster dissociation and a possible second pathway for failure. Remarkably, if first loaded by a "jump" in force to 20-30 pN, the bonds became strong when subjected to a force ramp as slow as 30 pN/sec and exhibited the same single-pathway kinetics under all force rates. Applied in this way, a new "jump/ramp" mode of force spectroscopy was used to show that the PSGL-1-P-selectin bond behaves as a mechanochemical switch where force history selects between two dissociation pathways with markedly different properties. Furthermore, replacing PSGL-1 by variants of its 19-aa N terminus and by the crucial tetrasaccharide sialyl LewisXproduces dramatic changes in the failure kinetics, suggesting a structural basis for the two pathways. The two-pathway switch seems to provide a mechanism for the "catch bond" response observed recently with PSGL-1-P-selectin bonds subjected to small-constant forces.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15277675</pmid><doi>10.1073/pnas.0401870101</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2004-08, Vol.101 (31), p.11281-11286
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201355273
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adhesion
Adhesive bonding
Biological Sciences
Biophysics
Bonds
Force distribution
Gangliosides - metabolism
Histograms
Hydrogen bonds
Kinetics
Ligands
Loading rate
Mechanical engineering
Membrane Glycoproteins - metabolism
Models, Chemical
P-Selectin - chemistry
P-Selectin - metabolism
Protein Binding - physiology
Protein Structure, Tertiary
Selectins
Spring constant
Switching
Tissue Adhesions
title Mechanical Switching and Coupling between Two Dissociation Pathways in a P-Selectin Adhesion Bond
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T09%3A07%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanical%20Switching%20and%20Coupling%20between%20Two%20Dissociation%20Pathways%20in%20a%20P-Selectin%20Adhesion%20Bond&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Evans,%20Evan&rft.date=2004-08-03&rft.volume=101&rft.issue=31&rft.spage=11281&rft.epage=11286&rft.pages=11281-11286&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0401870101&rft_dat=%3Cjstor_proqu%3E3372767%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201355273&rft_id=info:pmid/15277675&rft_jstor_id=3372767&rfr_iscdi=true