Ca2+/calmodulin-Dependent Kinase II Mediates Simultaneous Enhancement of Gap-Junctional Conductance and Glutamatergic Transmission

While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 1998-10, Vol.95 (22), p.13272-13277
Hauptverfasser: Pereda, Alberto E., Bell, Theodore D., Chang, Bill H., Czernik, Andrew J., Nairn, Angus C., Soderling, Thomas R., Faber, Donald S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13277
container_issue 22
container_start_page 13272
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 95
creator Pereda, Alberto E.
Bell, Theodore D.
Chang, Bill H.
Czernik, Andrew J.
Nairn, Angus C.
Soderling, Thomas R.
Faber, Donald S.
description While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+concentration, produced by patterned synaptic activity or intradendritic Ca2+injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.
doi_str_mv 10.1073/pnas.95.22.13272
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201353810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>46232</jstor_id><sourcerecordid>46232</sourcerecordid><originalsourceid>FETCH-LOGICAL-j360t-feed7e6b0613ac641b0f7f46ea5b85a2b246df225ce9be01f58cc585d39b90ae3</originalsourceid><addsrcrecordid>eNp9kc2LFDEUxIMo67h6F0EMHkSQns1Hp7sDXmRcx9EVD67nkE6_3s2QTsZOInr1LzfjDOvHwdM71O8VRRVCDylZUtLys53XcSnFkrEl5axlt9CCEkmrppbkNloQwtqqq1l9F92LcUsIkaIjJ-hEtp0kbbdAP1aavTgz2k1hyM766jXswA_gE35vizngzQZ_gMHqBBF_slN2SXsIOeJzf629gWnPhhGv9a56l71JNnjt8Cr4IZu0J7D2A167nPRUXOYra_DlrH2cbIwFvo_ujNpFeHC8p-jzm_PL1dvq4uN6s3p1UW15Q1I1AgwtND1pKNemqWlPxnasG9Ci74RmPaubYWRMGJA9EDqKzhjRiYHLXhIN_BS9PPjucj_BYEruWTu1m-2k5-8qaKv-Vry9Vlfhq2K87Uh5f3Z8n8OXDDGpkt-Ac4c6VFva5V0jC_j0H3Ab8lw6iYoRygXv6N7t8Z9hblIchyn6k6NeRvitCsWY-rV0IZ7_n1Bjdi7Bt1TQRwd0G1OYb9i6YZzxn1GatQM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201353810</pqid></control><display><type>article</type><title>Ca2+/calmodulin-Dependent Kinase II Mediates Simultaneous Enhancement of Gap-Junctional Conductance and Glutamatergic Transmission</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Pereda, Alberto E. ; Bell, Theodore D. ; Chang, Bill H. ; Czernik, Andrew J. ; Nairn, Angus C. ; Soderling, Thomas R. ; Faber, Donald S.</creator><creatorcontrib>Pereda, Alberto E. ; Bell, Theodore D. ; Chang, Bill H. ; Czernik, Andrew J. ; Nairn, Angus C. ; Soderling, Thomas R. ; Faber, Donald S.</creatorcontrib><description>While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+concentration, produced by patterned synaptic activity or intradendritic Ca2+injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.95.22.13272</identifier><identifier>PMID: 9789078</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Animals ; Antibodies ; Benzylamines - pharmacology ; Biological Sciences ; Biology ; Brain ; Calcium - metabolism ; Calcium Chloride - pharmacology ; Calcium-Calmodulin-Dependent Protein Kinase Type 2 ; Calcium-Calmodulin-Dependent Protein Kinases - metabolism ; Cell Communication ; Dendrites ; Dendrites - physiology ; Egtazic Acid - pharmacology ; Electric Conductivity ; Electric Stimulation ; Electrodes ; Enzyme Activation ; Enzyme Inhibitors - pharmacology ; Evoked Potentials - drug effects ; Evoked Potentials - physiology ; Excitatory Postsynaptic Potentials - drug effects ; Excitatory Postsynaptic Potentials - physiology ; Gap junctions ; Gap Junctions - physiology ; Glutamic Acid - physiology ; Goldfish ; Membrane Potentials - drug effects ; Membrane Potentials - physiology ; Nerves ; Neurology ; Neurons - drug effects ; Neurons - physiology ; Neuroscience ; Spinal Cord - physiology ; Sulfonamides - pharmacology ; Synapses ; Synapses - drug effects ; Synapses - physiology ; Synaptic Transmission - physiology ; Tetanus ; Vestibulocochlear Nerve - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 1998-10, Vol.95 (22), p.13272-13277</ispartof><rights>Copyright 1993-1998 National Academy of Sciences</rights><rights>Copyright National Academy of Sciences Oct 27, 1998</rights><rights>Copyright © 1998, The National Academy of Sciences 1998</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/95/22.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/46232$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/46232$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9789078$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pereda, Alberto E.</creatorcontrib><creatorcontrib>Bell, Theodore D.</creatorcontrib><creatorcontrib>Chang, Bill H.</creatorcontrib><creatorcontrib>Czernik, Andrew J.</creatorcontrib><creatorcontrib>Nairn, Angus C.</creatorcontrib><creatorcontrib>Soderling, Thomas R.</creatorcontrib><creatorcontrib>Faber, Donald S.</creatorcontrib><title>Ca2+/calmodulin-Dependent Kinase II Mediates Simultaneous Enhancement of Gap-Junctional Conductance and Glutamatergic Transmission</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+concentration, produced by patterned synaptic activity or intradendritic Ca2+injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.</description><subject>Animals</subject><subject>Antibodies</subject><subject>Benzylamines - pharmacology</subject><subject>Biological Sciences</subject><subject>Biology</subject><subject>Brain</subject><subject>Calcium - metabolism</subject><subject>Calcium Chloride - pharmacology</subject><subject>Calcium-Calmodulin-Dependent Protein Kinase Type 2</subject><subject>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</subject><subject>Cell Communication</subject><subject>Dendrites</subject><subject>Dendrites - physiology</subject><subject>Egtazic Acid - pharmacology</subject><subject>Electric Conductivity</subject><subject>Electric Stimulation</subject><subject>Electrodes</subject><subject>Enzyme Activation</subject><subject>Enzyme Inhibitors - pharmacology</subject><subject>Evoked Potentials - drug effects</subject><subject>Evoked Potentials - physiology</subject><subject>Excitatory Postsynaptic Potentials - drug effects</subject><subject>Excitatory Postsynaptic Potentials - physiology</subject><subject>Gap junctions</subject><subject>Gap Junctions - physiology</subject><subject>Glutamic Acid - physiology</subject><subject>Goldfish</subject><subject>Membrane Potentials - drug effects</subject><subject>Membrane Potentials - physiology</subject><subject>Nerves</subject><subject>Neurology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Neuroscience</subject><subject>Spinal Cord - physiology</subject><subject>Sulfonamides - pharmacology</subject><subject>Synapses</subject><subject>Synapses - drug effects</subject><subject>Synapses - physiology</subject><subject>Synaptic Transmission - physiology</subject><subject>Tetanus</subject><subject>Vestibulocochlear Nerve - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc2LFDEUxIMo67h6F0EMHkSQns1Hp7sDXmRcx9EVD67nkE6_3s2QTsZOInr1LzfjDOvHwdM71O8VRRVCDylZUtLys53XcSnFkrEl5axlt9CCEkmrppbkNloQwtqqq1l9F92LcUsIkaIjJ-hEtp0kbbdAP1aavTgz2k1hyM766jXswA_gE35vizngzQZ_gMHqBBF_slN2SXsIOeJzf629gWnPhhGv9a56l71JNnjt8Cr4IZu0J7D2A167nPRUXOYra_DlrH2cbIwFvo_ujNpFeHC8p-jzm_PL1dvq4uN6s3p1UW15Q1I1AgwtND1pKNemqWlPxnasG9Ci74RmPaubYWRMGJA9EDqKzhjRiYHLXhIN_BS9PPjucj_BYEruWTu1m-2k5-8qaKv-Vry9Vlfhq2K87Uh5f3Z8n8OXDDGpkt-Ac4c6VFva5V0jC_j0H3Ab8lw6iYoRygXv6N7t8Z9hblIchyn6k6NeRvitCsWY-rV0IZ7_n1Bjdi7Bt1TQRwd0G1OYb9i6YZzxn1GatQM</recordid><startdate>19981027</startdate><enddate>19981027</enddate><creator>Pereda, Alberto E.</creator><creator>Bell, Theodore D.</creator><creator>Chang, Bill H.</creator><creator>Czernik, Andrew J.</creator><creator>Nairn, Angus C.</creator><creator>Soderling, Thomas R.</creator><creator>Faber, Donald S.</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19981027</creationdate><title>Ca2+/calmodulin-Dependent Kinase II Mediates Simultaneous Enhancement of Gap-Junctional Conductance and Glutamatergic Transmission</title><author>Pereda, Alberto E. ; Bell, Theodore D. ; Chang, Bill H. ; Czernik, Andrew J. ; Nairn, Angus C. ; Soderling, Thomas R. ; Faber, Donald S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j360t-feed7e6b0613ac641b0f7f46ea5b85a2b246df225ce9be01f58cc585d39b90ae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Antibodies</topic><topic>Benzylamines - pharmacology</topic><topic>Biological Sciences</topic><topic>Biology</topic><topic>Brain</topic><topic>Calcium - metabolism</topic><topic>Calcium Chloride - pharmacology</topic><topic>Calcium-Calmodulin-Dependent Protein Kinase Type 2</topic><topic>Calcium-Calmodulin-Dependent Protein Kinases - metabolism</topic><topic>Cell Communication</topic><topic>Dendrites</topic><topic>Dendrites - physiology</topic><topic>Egtazic Acid - pharmacology</topic><topic>Electric Conductivity</topic><topic>Electric Stimulation</topic><topic>Electrodes</topic><topic>Enzyme Activation</topic><topic>Enzyme Inhibitors - pharmacology</topic><topic>Evoked Potentials - drug effects</topic><topic>Evoked Potentials - physiology</topic><topic>Excitatory Postsynaptic Potentials - drug effects</topic><topic>Excitatory Postsynaptic Potentials - physiology</topic><topic>Gap junctions</topic><topic>Gap Junctions - physiology</topic><topic>Glutamic Acid - physiology</topic><topic>Goldfish</topic><topic>Membrane Potentials - drug effects</topic><topic>Membrane Potentials - physiology</topic><topic>Nerves</topic><topic>Neurology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Neuroscience</topic><topic>Spinal Cord - physiology</topic><topic>Sulfonamides - pharmacology</topic><topic>Synapses</topic><topic>Synapses - drug effects</topic><topic>Synapses - physiology</topic><topic>Synaptic Transmission - physiology</topic><topic>Tetanus</topic><topic>Vestibulocochlear Nerve - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pereda, Alberto E.</creatorcontrib><creatorcontrib>Bell, Theodore D.</creatorcontrib><creatorcontrib>Chang, Bill H.</creatorcontrib><creatorcontrib>Czernik, Andrew J.</creatorcontrib><creatorcontrib>Nairn, Angus C.</creatorcontrib><creatorcontrib>Soderling, Thomas R.</creatorcontrib><creatorcontrib>Faber, Donald S.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pereda, Alberto E.</au><au>Bell, Theodore D.</au><au>Chang, Bill H.</au><au>Czernik, Andrew J.</au><au>Nairn, Angus C.</au><au>Soderling, Thomas R.</au><au>Faber, Donald S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ca2+/calmodulin-Dependent Kinase II Mediates Simultaneous Enhancement of Gap-Junctional Conductance and Glutamatergic Transmission</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>1998-10-27</date><risdate>1998</risdate><volume>95</volume><issue>22</issue><spage>13272</spage><epage>13277</epage><pages>13272-13277</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>While chemical synapses are very plastic and modifiable by defined activity patterns, gap junctions, which mediate electrical transmission, have been classically perceived as passive intercellular channels. Excitatory transmission between auditory afferents and the goldfish Mauthner cell is mediated by coexisting gap junctions and glutamatergic synapses. Although an increased intracellular Ca2+concentration is expected to reduce gap junctional conductance, both components of the synaptic response were instead enhanced by postsynaptic increases in Ca2+concentration, produced by patterned synaptic activity or intradendritic Ca2+injections. The synaptically induced potentiations were blocked by intradendritic injection of KN-93, a Ca2+/calmodulin-dependent kinase (CaM-K) inhibitor, or CaM-KIINtide, a potent and specific peptide inhibitor of CaM-KII, whereas the responses were potentiated by injection of an activated form of CaM-KII. The striking similarities of the mechanisms reported here with those proposed for long-term potentiation of mammalian glutamatergic synapses suggest that gap junctions are also similarly regulated and indicate a primary role for CaM-KII in shaping and regulating interneuronal communication, regardless of its modality.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>9789078</pmid><doi>10.1073/pnas.95.22.13272</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 1998-10, Vol.95 (22), p.13272-13277
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201353810
source MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Antibodies
Benzylamines - pharmacology
Biological Sciences
Biology
Brain
Calcium - metabolism
Calcium Chloride - pharmacology
Calcium-Calmodulin-Dependent Protein Kinase Type 2
Calcium-Calmodulin-Dependent Protein Kinases - metabolism
Cell Communication
Dendrites
Dendrites - physiology
Egtazic Acid - pharmacology
Electric Conductivity
Electric Stimulation
Electrodes
Enzyme Activation
Enzyme Inhibitors - pharmacology
Evoked Potentials - drug effects
Evoked Potentials - physiology
Excitatory Postsynaptic Potentials - drug effects
Excitatory Postsynaptic Potentials - physiology
Gap junctions
Gap Junctions - physiology
Glutamic Acid - physiology
Goldfish
Membrane Potentials - drug effects
Membrane Potentials - physiology
Nerves
Neurology
Neurons - drug effects
Neurons - physiology
Neuroscience
Spinal Cord - physiology
Sulfonamides - pharmacology
Synapses
Synapses - drug effects
Synapses - physiology
Synaptic Transmission - physiology
Tetanus
Vestibulocochlear Nerve - physiology
title Ca2+/calmodulin-Dependent Kinase II Mediates Simultaneous Enhancement of Gap-Junctional Conductance and Glutamatergic Transmission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T15%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ca2+/calmodulin-Dependent%20Kinase%20II%20Mediates%20Simultaneous%20Enhancement%20of%20Gap-Junctional%20Conductance%20and%20Glutamatergic%20Transmission&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Pereda,%20Alberto%20E.&rft.date=1998-10-27&rft.volume=95&rft.issue=22&rft.spage=13272&rft.epage=13277&rft.pages=13272-13277&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.95.22.13272&rft_dat=%3Cjstor_proqu%3E46232%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201353810&rft_id=info:pmid/9789078&rft_jstor_id=46232&rfr_iscdi=true