Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa

We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-11, Vol.100 (24), p.14339-14344
Hauptverfasser: Jacobs, Michael A., Alwood, Ashley, Thaipisuttikul, Iyarit, Spencer, David, Haugen, Eric, Ernst, Stephen, Will, Oliver, Kaul, Rajinder, Raymond, Christopher, Levy, Ruth, Chun-Rong, Liu, Guenthner, Donald, Bovee, Donald, Olson, Maynard V., Manoil, Colin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14344
container_issue 24
container_start_page 14339
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Jacobs, Michael A.
Alwood, Ashley
Thaipisuttikul, Iyarit
Spencer, David
Haugen, Eric
Ernst, Stephen
Will, Oliver
Kaul, Rajinder
Raymond, Christopher
Levy, Ruth
Chun-Rong, Liu
Guenthner, Donald
Bovee, Donald
Olson, Maynard V.
Manoil, Colin
description We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.
doi_str_mv 10.1073/pnas.2036282100
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201344385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3148959</jstor_id><sourcerecordid>3148959</sourcerecordid><originalsourceid>FETCH-LOGICAL-c574t-3468e4a4ef82e600a24b9f52c87c83f96f97f3e29fee603a059d56b112476bf23</originalsourceid><addsrcrecordid>eNqF0T1v2zAQBmCiaNA4bucuRSF0CNBByfFDIjlkCIx-AQ7SIZ0JSj4mMiRSJaWg_felYSNuu2TicM97vMMR8pbCBQXJL0dv0wUDXjPFKMALsqCgaVkLDS_JAoDJUgkmTslZSlsA0JWCV-SUippKKdWCXK_CMEZ8QJ-6RyzuovVpDCn44maerJ-KdddEG38XwRXfE86bMIT8Z2ExzvedD8m-JifO9gnfHN4l-fH5093qa7m-_fJtdb0u20qKqeSiViisQKcY1gCWiUa7irVKtoo7XTstHUemHeYyt1DpTVU3lDIh68YxviRX-77j3Ay4adFP0fZmjN2Q5zPBdubfiu8ezH14NEzxSvOcPz_kY_g5Y5rM0KUW-956DHMyVLOayyyX5MN_cBvm6PNuhgHlQnBVZXS5R20MKUV0T4NQMLvTmN1pzPE0OfH-7_mP_nCLDD4ewC55bAeGiaw418bNfT_hrynb4hmbybs92aYpxCfDqVA6b_kHnH6s8A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201344385</pqid></control><display><type>article</type><title>Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Jacobs, Michael A. ; Alwood, Ashley ; Thaipisuttikul, Iyarit ; Spencer, David ; Haugen, Eric ; Ernst, Stephen ; Will, Oliver ; Kaul, Rajinder ; Raymond, Christopher ; Levy, Ruth ; Chun-Rong, Liu ; Guenthner, Donald ; Bovee, Donald ; Olson, Maynard V. ; Manoil, Colin</creator><creatorcontrib>Jacobs, Michael A. ; Alwood, Ashley ; Thaipisuttikul, Iyarit ; Spencer, David ; Haugen, Eric ; Ernst, Stephen ; Will, Oliver ; Kaul, Rajinder ; Raymond, Christopher ; Levy, Ruth ; Chun-Rong, Liu ; Guenthner, Donald ; Bovee, Donald ; Olson, Maynard V. ; Manoil, Colin</creatorcontrib><description>We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2036282100</identifier><identifier>PMID: 14617778</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Escherichia coli - genetics ; Essential genes ; Gene Library ; Genes ; Genes, Bacterial ; Genetic engineering ; Genetic transposition ; Genomes ; Libraries ; Library collections ; Microbiology ; Mutagenesis, Insertional ; Mutation ; Open reading frames ; Phenotype ; Phenotypes ; Pseudomonas aeruginosa ; Pseudomonas aeruginosa - genetics ; Species Specificity ; Transposons ; Twitching</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.14339-14344</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 25, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c574t-3468e4a4ef82e600a24b9f52c87c83f96f97f3e29fee603a059d56b112476bf23</citedby><cites>FETCH-LOGICAL-c574t-3468e4a4ef82e600a24b9f52c87c83f96f97f3e29fee603a059d56b112476bf23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3148959$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3148959$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14617778$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobs, Michael A.</creatorcontrib><creatorcontrib>Alwood, Ashley</creatorcontrib><creatorcontrib>Thaipisuttikul, Iyarit</creatorcontrib><creatorcontrib>Spencer, David</creatorcontrib><creatorcontrib>Haugen, Eric</creatorcontrib><creatorcontrib>Ernst, Stephen</creatorcontrib><creatorcontrib>Will, Oliver</creatorcontrib><creatorcontrib>Kaul, Rajinder</creatorcontrib><creatorcontrib>Raymond, Christopher</creatorcontrib><creatorcontrib>Levy, Ruth</creatorcontrib><creatorcontrib>Chun-Rong, Liu</creatorcontrib><creatorcontrib>Guenthner, Donald</creatorcontrib><creatorcontrib>Bovee, Donald</creatorcontrib><creatorcontrib>Olson, Maynard V.</creatorcontrib><creatorcontrib>Manoil, Colin</creatorcontrib><title>Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.</description><subject>Biological Sciences</subject><subject>Escherichia coli - genetics</subject><subject>Essential genes</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic engineering</subject><subject>Genetic transposition</subject><subject>Genomes</subject><subject>Libraries</subject><subject>Library collections</subject><subject>Microbiology</subject><subject>Mutagenesis, Insertional</subject><subject>Mutation</subject><subject>Open reading frames</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Pseudomonas aeruginosa</subject><subject>Pseudomonas aeruginosa - genetics</subject><subject>Species Specificity</subject><subject>Transposons</subject><subject>Twitching</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0T1v2zAQBmCiaNA4bucuRSF0CNBByfFDIjlkCIx-AQ7SIZ0JSj4mMiRSJaWg_felYSNuu2TicM97vMMR8pbCBQXJL0dv0wUDXjPFKMALsqCgaVkLDS_JAoDJUgkmTslZSlsA0JWCV-SUippKKdWCXK_CMEZ8QJ-6RyzuovVpDCn44maerJ-KdddEG38XwRXfE86bMIT8Z2ExzvedD8m-JifO9gnfHN4l-fH5093qa7m-_fJtdb0u20qKqeSiViisQKcY1gCWiUa7irVKtoo7XTstHUemHeYyt1DpTVU3lDIh68YxviRX-77j3Ay4adFP0fZmjN2Q5zPBdubfiu8ezH14NEzxSvOcPz_kY_g5Y5rM0KUW-956DHMyVLOayyyX5MN_cBvm6PNuhgHlQnBVZXS5R20MKUV0T4NQMLvTmN1pzPE0OfH-7_mP_nCLDD4ewC55bAeGiaw418bNfT_hrynb4hmbybs92aYpxCfDqVA6b_kHnH6s8A</recordid><startdate>20031125</startdate><enddate>20031125</enddate><creator>Jacobs, Michael A.</creator><creator>Alwood, Ashley</creator><creator>Thaipisuttikul, Iyarit</creator><creator>Spencer, David</creator><creator>Haugen, Eric</creator><creator>Ernst, Stephen</creator><creator>Will, Oliver</creator><creator>Kaul, Rajinder</creator><creator>Raymond, Christopher</creator><creator>Levy, Ruth</creator><creator>Chun-Rong, Liu</creator><creator>Guenthner, Donald</creator><creator>Bovee, Donald</creator><creator>Olson, Maynard V.</creator><creator>Manoil, Colin</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20031125</creationdate><title>Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa</title><author>Jacobs, Michael A. ; Alwood, Ashley ; Thaipisuttikul, Iyarit ; Spencer, David ; Haugen, Eric ; Ernst, Stephen ; Will, Oliver ; Kaul, Rajinder ; Raymond, Christopher ; Levy, Ruth ; Chun-Rong, Liu ; Guenthner, Donald ; Bovee, Donald ; Olson, Maynard V. ; Manoil, Colin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c574t-3468e4a4ef82e600a24b9f52c87c83f96f97f3e29fee603a059d56b112476bf23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Biological Sciences</topic><topic>Escherichia coli - genetics</topic><topic>Essential genes</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic engineering</topic><topic>Genetic transposition</topic><topic>Genomes</topic><topic>Libraries</topic><topic>Library collections</topic><topic>Microbiology</topic><topic>Mutagenesis, Insertional</topic><topic>Mutation</topic><topic>Open reading frames</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Pseudomonas aeruginosa</topic><topic>Pseudomonas aeruginosa - genetics</topic><topic>Species Specificity</topic><topic>Transposons</topic><topic>Twitching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobs, Michael A.</creatorcontrib><creatorcontrib>Alwood, Ashley</creatorcontrib><creatorcontrib>Thaipisuttikul, Iyarit</creatorcontrib><creatorcontrib>Spencer, David</creatorcontrib><creatorcontrib>Haugen, Eric</creatorcontrib><creatorcontrib>Ernst, Stephen</creatorcontrib><creatorcontrib>Will, Oliver</creatorcontrib><creatorcontrib>Kaul, Rajinder</creatorcontrib><creatorcontrib>Raymond, Christopher</creatorcontrib><creatorcontrib>Levy, Ruth</creatorcontrib><creatorcontrib>Chun-Rong, Liu</creatorcontrib><creatorcontrib>Guenthner, Donald</creatorcontrib><creatorcontrib>Bovee, Donald</creatorcontrib><creatorcontrib>Olson, Maynard V.</creatorcontrib><creatorcontrib>Manoil, Colin</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobs, Michael A.</au><au>Alwood, Ashley</au><au>Thaipisuttikul, Iyarit</au><au>Spencer, David</au><au>Haugen, Eric</au><au>Ernst, Stephen</au><au>Will, Oliver</au><au>Kaul, Rajinder</au><au>Raymond, Christopher</au><au>Levy, Ruth</au><au>Chun-Rong, Liu</au><au>Guenthner, Donald</au><au>Bovee, Donald</au><au>Olson, Maynard V.</au><au>Manoil, Colin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-11-25</date><risdate>2003</risdate><volume>100</volume><issue>24</issue><spage>14339</spage><epage>14344</epage><pages>14339-14344</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We have developed technologies for creating saturating libraries of sequence-defined transposon insertion mutants in which each strain is maintained. Phenotypic analysis of such libraries should provide a virtually complete identification of nonessential genes required for any process for which a suitable screen can be devised. The approach was applied to Pseudomonas aeruginosa, an opportunistic pathogen with a 6.3-Mbp genome. The library that was generated consists of 30,100 sequence-defined mutants, corresponding to an average of five insertions per gene. About 12% of the predicted genes of this organism lacked insertions; many of these genes are likely to be essential for growth on rich media. Based on statistical analyses and bioinformatic comparison to known essential genes in E. coli, we estimate that the actual number of essential genes is 300-400. Screening the collection for strains defective in two defined multigenic processes (twitching motility and prototrophic growth) identified mutants corresponding to nearly all genes expected from earlier studies. Thus, phenotypic analysis of the collection may produce essentially complete lists of genes required for diverse biological activities. The transposons used to generate the mutant collection have added features that should facilitate downstream studies of gene expression, protein localization, epistasis, and chromosome engineering.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14617778</pmid><doi>10.1073/pnas.2036282100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-11, Vol.100 (24), p.14339-14344
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201344385
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Biological Sciences
Escherichia coli - genetics
Essential genes
Gene Library
Genes
Genes, Bacterial
Genetic engineering
Genetic transposition
Genomes
Libraries
Library collections
Microbiology
Mutagenesis, Insertional
Mutation
Open reading frames
Phenotype
Phenotypes
Pseudomonas aeruginosa
Pseudomonas aeruginosa - genetics
Species Specificity
Transposons
Twitching
title Comprehensive Transposon Mutant Library of Pseudomonas aeruginosa
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T20%3A01%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Transposon%20Mutant%20Library%20of%20Pseudomonas%20aeruginosa&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Jacobs,%20Michael%20A.&rft.date=2003-11-25&rft.volume=100&rft.issue=24&rft.spage=14339&rft.epage=14344&rft.pages=14339-14344&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2036282100&rft_dat=%3Cjstor_proqu%3E3148959%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201344385&rft_id=info:pmid/14617778&rft_jstor_id=3148959&rfr_iscdi=true