Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi
Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but t...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (1), p.163-168 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 168 |
---|---|
container_issue | 1 |
container_start_page | 163 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Donohoe, Bryon S Kang, Byung-Ho Staehelin, L. Andrew |
description | Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combination of electron tomography and immunolabeling techniques to examine Golgi stacks and associated vesicles in the cells of the scale-producing alga Scherffelia dubia and Arabidopsis preserved by high-pressure freezing/freeze-substitution methods. Five structurally distinct types of vesicles were distinguished. In Arabidopsis, COPI and COPII vesicle coat proteins as well as vesicle cargo molecules (mannosidase I and sialyltransferase-yellow fluorescent protein) were identified by immunogold labeling. In both organisms, the COPI-type vesicles were further characterized by a combination of six structural criteria: coat architecture, coat thickness, membrane structure, cargo staining, cisternal origin, and spatial distribution. Using this multiparameter structural approach, we can distinguish two types of COPI vesicles, COPIa and COPIb. COPIa vesicles bud exclusively from cis cisternae and occupy the space between cis cisternae and ER export sites, whereas the COPIb vesicles bud exclusively from medial- and trans-Golgi cisternae and are confined to the space around these latter cisternae. We conclude that COPIa vesicle-mediated recycling to the ER occurs only from cis cisternae, that retrograde transport of Golgi resident proteins by COPIb vesicles is limited to medial and trans cisternae, and that diffusion of periGolgi vesicles is restricted. |
doi_str_mv | 10.1073/pnas.0609818104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201334321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426068</jstor_id><sourcerecordid>25426068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4634-71b030ff7f6988a8812c707ec81959ec99c8cf8281253de17bc25c9d36ca75593</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIREPhzAlYceC27Xjt9ccFCUVQIlUqEvRsOV47ceSsg-0tlL8ebxM1hQNcbMvvN08z86rqJYIzBAyf7waVzoCC4IgjII-qGQKBGkoEPK5mAC1rOGnJSfUspQ0AiI7D0-oEMcQ7gtCsioveDNlZp1V2YajV0Nd6raLS2UT3a_8ZbD2_-rJQzZ08PZdNvt2Z-sYkp72ptVcpmVSXM2insunrHy6v651XQ74rUn6lfH0R_Mo9r55Y5ZN5cbhPq-tPH7_NPzeXVxeL-YfLRhOKScPQEjBYyywVnCvOUasZMKM5Ep0wWgjNteVt-e9wbxBb6rbTosdUK9Z1Ap9W7_e-u3G5Nb0uc0bl5S66rYq3Mign_1QGt5arcCMRox1peTF4dzCI4ftoUpZbl7TxZSgTxiQpxwJ1VPwXbEFgIAwK-PYvcBPGOJQtFAZhTHCLCnS-h3QMKUVj71tGIKfU5ZS6PKZeKl4_nPTIH2J-0OBUebQjEklEsbSj99n8zAV89S_wqG9SDvEeaMu-KNBpZW_2ulVBqlV0SV5_nUaD0jcDQfFvjWfShA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201334321</pqid></control><display><type>article</type><title>Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Donohoe, Bryon S ; Kang, Byung-Ho ; Staehelin, L. Andrew</creator><creatorcontrib>Donohoe, Bryon S ; Kang, Byung-Ho ; Staehelin, L. Andrew</creatorcontrib><description>Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combination of electron tomography and immunolabeling techniques to examine Golgi stacks and associated vesicles in the cells of the scale-producing alga Scherffelia dubia and Arabidopsis preserved by high-pressure freezing/freeze-substitution methods. Five structurally distinct types of vesicles were distinguished. In Arabidopsis, COPI and COPII vesicle coat proteins as well as vesicle cargo molecules (mannosidase I and sialyltransferase-yellow fluorescent protein) were identified by immunogold labeling. In both organisms, the COPI-type vesicles were further characterized by a combination of six structural criteria: coat architecture, coat thickness, membrane structure, cargo staining, cisternal origin, and spatial distribution. Using this multiparameter structural approach, we can distinguish two types of COPI vesicles, COPIa and COPIb. COPIa vesicles bud exclusively from cis cisternae and occupy the space between cis cisternae and ER export sites, whereas the COPIb vesicles bud exclusively from medial- and trans-Golgi cisternae and are confined to the space around these latter cisternae. We conclude that COPIa vesicle-mediated recycling to the ER occurs only from cis cisternae, that retrograde transport of Golgi resident proteins by COPIb vesicles is limited to medial and trans cisternae, and that diffusion of periGolgi vesicles is restricted.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0609818104</identifier><identifier>PMID: 17185411</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>algae and seaweeds ; Antibodies ; Arabidopsis ; Arabidopsis - ultrastructure ; Arabidopsis thaliana ; Biological Sciences ; Biological Transport ; Budding ; Capsid proteins ; Cells ; Clathrin coated vesicles ; Clathrin-Coated Vesicles - ultrastructure ; coat protein I vesicles ; COP-Coated Vesicles - ultrastructure ; electron tomography ; Electrons ; Endoplasmic Reticulum - ultrastructure ; Eukaryota - ultrastructure ; Freight ; Golgi apparatus ; Golgi Apparatus - ultrastructure ; immunocytochemistry ; Molecular biology ; Molecules ; organelles ; Plant cells ; plant proteins ; Proteins ; Recycling ; Scherffelia dubia ; Tomography ; Trans golgi network ; ultrastructure</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.163-168</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 2, 2007</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4634-71b030ff7f6988a8812c707ec81959ec99c8cf8281253de17bc25c9d36ca75593</citedby><cites>FETCH-LOGICAL-c4634-71b030ff7f6988a8812c707ec81959ec99c8cf8281253de17bc25c9d36ca75593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/1.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426068$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426068$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17185411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Donohoe, Bryon S</creatorcontrib><creatorcontrib>Kang, Byung-Ho</creatorcontrib><creatorcontrib>Staehelin, L. Andrew</creatorcontrib><title>Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combination of electron tomography and immunolabeling techniques to examine Golgi stacks and associated vesicles in the cells of the scale-producing alga Scherffelia dubia and Arabidopsis preserved by high-pressure freezing/freeze-substitution methods. Five structurally distinct types of vesicles were distinguished. In Arabidopsis, COPI and COPII vesicle coat proteins as well as vesicle cargo molecules (mannosidase I and sialyltransferase-yellow fluorescent protein) were identified by immunogold labeling. In both organisms, the COPI-type vesicles were further characterized by a combination of six structural criteria: coat architecture, coat thickness, membrane structure, cargo staining, cisternal origin, and spatial distribution. Using this multiparameter structural approach, we can distinguish two types of COPI vesicles, COPIa and COPIb. COPIa vesicles bud exclusively from cis cisternae and occupy the space between cis cisternae and ER export sites, whereas the COPIb vesicles bud exclusively from medial- and trans-Golgi cisternae and are confined to the space around these latter cisternae. We conclude that COPIa vesicle-mediated recycling to the ER occurs only from cis cisternae, that retrograde transport of Golgi resident proteins by COPIb vesicles is limited to medial and trans cisternae, and that diffusion of periGolgi vesicles is restricted.</description><subject>algae and seaweeds</subject><subject>Antibodies</subject><subject>Arabidopsis</subject><subject>Arabidopsis - ultrastructure</subject><subject>Arabidopsis thaliana</subject><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>Budding</subject><subject>Capsid proteins</subject><subject>Cells</subject><subject>Clathrin coated vesicles</subject><subject>Clathrin-Coated Vesicles - ultrastructure</subject><subject>coat protein I vesicles</subject><subject>COP-Coated Vesicles - ultrastructure</subject><subject>electron tomography</subject><subject>Electrons</subject><subject>Endoplasmic Reticulum - ultrastructure</subject><subject>Eukaryota - ultrastructure</subject><subject>Freight</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - ultrastructure</subject><subject>immunocytochemistry</subject><subject>Molecular biology</subject><subject>Molecules</subject><subject>organelles</subject><subject>Plant cells</subject><subject>plant proteins</subject><subject>Proteins</subject><subject>Recycling</subject><subject>Scherffelia dubia</subject><subject>Tomography</subject><subject>Trans golgi network</subject><subject>ultrastructure</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIREPhzAlYceC27Xjt9ccFCUVQIlUqEvRsOV47ceSsg-0tlL8ebxM1hQNcbMvvN08z86rqJYIzBAyf7waVzoCC4IgjII-qGQKBGkoEPK5mAC1rOGnJSfUspQ0AiI7D0-oEMcQ7gtCsioveDNlZp1V2YajV0Nd6raLS2UT3a_8ZbD2_-rJQzZ08PZdNvt2Z-sYkp72ptVcpmVSXM2insunrHy6v651XQ74rUn6lfH0R_Mo9r55Y5ZN5cbhPq-tPH7_NPzeXVxeL-YfLRhOKScPQEjBYyywVnCvOUasZMKM5Ep0wWgjNteVt-e9wbxBb6rbTosdUK9Z1Ap9W7_e-u3G5Nb0uc0bl5S66rYq3Mign_1QGt5arcCMRox1peTF4dzCI4ftoUpZbl7TxZSgTxiQpxwJ1VPwXbEFgIAwK-PYvcBPGOJQtFAZhTHCLCnS-h3QMKUVj71tGIKfU5ZS6PKZeKl4_nPTIH2J-0OBUebQjEklEsbSj99n8zAV89S_wqG9SDvEeaMu-KNBpZW_2ulVBqlV0SV5_nUaD0jcDQfFvjWfShA</recordid><startdate>20070102</startdate><enddate>20070102</enddate><creator>Donohoe, Bryon S</creator><creator>Kang, Byung-Ho</creator><creator>Staehelin, L. Andrew</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070102</creationdate><title>Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi</title><author>Donohoe, Bryon S ; Kang, Byung-Ho ; Staehelin, L. Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4634-71b030ff7f6988a8812c707ec81959ec99c8cf8281253de17bc25c9d36ca75593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>algae and seaweeds</topic><topic>Antibodies</topic><topic>Arabidopsis</topic><topic>Arabidopsis - ultrastructure</topic><topic>Arabidopsis thaliana</topic><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>Budding</topic><topic>Capsid proteins</topic><topic>Cells</topic><topic>Clathrin coated vesicles</topic><topic>Clathrin-Coated Vesicles - ultrastructure</topic><topic>coat protein I vesicles</topic><topic>COP-Coated Vesicles - ultrastructure</topic><topic>electron tomography</topic><topic>Electrons</topic><topic>Endoplasmic Reticulum - ultrastructure</topic><topic>Eukaryota - ultrastructure</topic><topic>Freight</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - ultrastructure</topic><topic>immunocytochemistry</topic><topic>Molecular biology</topic><topic>Molecules</topic><topic>organelles</topic><topic>Plant cells</topic><topic>plant proteins</topic><topic>Proteins</topic><topic>Recycling</topic><topic>Scherffelia dubia</topic><topic>Tomography</topic><topic>Trans golgi network</topic><topic>ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Donohoe, Bryon S</creatorcontrib><creatorcontrib>Kang, Byung-Ho</creatorcontrib><creatorcontrib>Staehelin, L. Andrew</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Donohoe, Bryon S</au><au>Kang, Byung-Ho</au><au>Staehelin, L. Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-01-02</date><risdate>2007</risdate><volume>104</volume><issue>1</issue><spage>163</spage><epage>168</epage><pages>163-168</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Coat protein I (COPI) vesicles arise from Golgi cisternae and mediate the recycling of proteins from the Golgi back to the endoplasmic reticulum (ER) and the transport of Golgi resident proteins between cisternae. In vitro studies have produced evidence for two distinct types of COPI vesicles, but the in vivo sites of operation of these vesicles remain to be established. We have used a combination of electron tomography and immunolabeling techniques to examine Golgi stacks and associated vesicles in the cells of the scale-producing alga Scherffelia dubia and Arabidopsis preserved by high-pressure freezing/freeze-substitution methods. Five structurally distinct types of vesicles were distinguished. In Arabidopsis, COPI and COPII vesicle coat proteins as well as vesicle cargo molecules (mannosidase I and sialyltransferase-yellow fluorescent protein) were identified by immunogold labeling. In both organisms, the COPI-type vesicles were further characterized by a combination of six structural criteria: coat architecture, coat thickness, membrane structure, cargo staining, cisternal origin, and spatial distribution. Using this multiparameter structural approach, we can distinguish two types of COPI vesicles, COPIa and COPIb. COPIa vesicles bud exclusively from cis cisternae and occupy the space between cis cisternae and ER export sites, whereas the COPIb vesicles bud exclusively from medial- and trans-Golgi cisternae and are confined to the space around these latter cisternae. We conclude that COPIa vesicle-mediated recycling to the ER occurs only from cis cisternae, that retrograde transport of Golgi resident proteins by COPIb vesicles is limited to medial and trans cisternae, and that diffusion of periGolgi vesicles is restricted.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17185411</pmid><doi>10.1073/pnas.0609818104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (1), p.163-168 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201334321 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | algae and seaweeds Antibodies Arabidopsis Arabidopsis - ultrastructure Arabidopsis thaliana Biological Sciences Biological Transport Budding Capsid proteins Cells Clathrin coated vesicles Clathrin-Coated Vesicles - ultrastructure coat protein I vesicles COP-Coated Vesicles - ultrastructure electron tomography Electrons Endoplasmic Reticulum - ultrastructure Eukaryota - ultrastructure Freight Golgi apparatus Golgi Apparatus - ultrastructure immunocytochemistry Molecular biology Molecules organelles Plant cells plant proteins Proteins Recycling Scherffelia dubia Tomography Trans golgi network ultrastructure |
title | Identification and characterization of COPIa- and COPIb-type vesicle classes associated with plant and algal Golgi |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T03%3A51%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20characterization%20of%20COPIa-%20and%20COPIb-type%20vesicle%20classes%20associated%20with%20plant%20and%20algal%20Golgi&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Donohoe,%20Bryon%20S&rft.date=2007-01-02&rft.volume=104&rft.issue=1&rft.spage=163&rft.epage=168&rft.pages=163-168&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0609818104&rft_dat=%3Cjstor_proqu%3E25426068%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201334321&rft_id=info:pmid/17185411&rft_jstor_id=25426068&rfr_iscdi=true |