Essential Role of Glu-C66 for Menaquinol Oxidation Indicates Transmembrane Electrochemical Potential Generation by Wolinella succinogenes Fumarate Reductase

Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2000-11, Vol.97 (24), p.13051-13056
Hauptverfasser: C. Roy D. Lancaster, Gross, Roland, Haas, Alexander, Ritter, Michaela, Mantele, Werner, Simon, Jorg, Kroger, Achim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13056
container_issue 24
container_start_page 13051
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 97
creator C. Roy D. Lancaster
Gross, Roland
Haas, Alexander
Ritter, Michaela
Mantele, Werner
Simon, Jorg
Kroger, Achim
description Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1- angstrom resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.
doi_str_mv 10.1073/pnas.220425797
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201329719</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>123653</jstor_id><sourcerecordid>123653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c519t-f104bef4f6d35e945cd623c549c0b63802129bb83d41c0b259ff3b4698b798773</originalsourceid><addsrcrecordid>eNp9kc1u1DAUhSMEokNhywYJLBaITQb_JY4lNmg0HSoVFVVFLC3HuWkzcuyp7aD2XXhYPJrQAgtWV_L5zvW5OkXxkuAlwYJ92Dkdl5RiTishxaNiQbAkZc0lflwsMKaibDjlR8WzGLcYY1k1-GlxRAhpakqrRfFzHSO4NGiLLrwF5Hu0sVO5qmvU-4C-gNM30-C8Ree3Q6fT4B06dd1gdIKILoN2cYSxzRPQ2oJJwZtrGLNu0Vef5tUbcBAO5vYOffd2cGCtRnEyJi-_ynJEJ9OoMwToArrJJB3hefGk1zbCi3keF99O1perz-XZ-eZ09emsNBWRqewJ5i30vK87VoHklelqykzFpcFtzRpMCZVt27COk_xCK9n3rOW1bFohGyHYcfHxsHc3tSN0JqcO2qpdGHKiO-X1oP5W3HCtrvwPRQURdba_m-3B30wQkxqHaPYHOvBTVEQI3simyeDbf8Ctn4LLpymKCaNSEJmh5QEywccYoL_PQbDad672nav7zrPh9Z_pH_C55Ay8mYG98bcshaJcEYYrkon3_ydUP1mb4DZl9NUB3cbkw8NnlNUVY78AfzvM3Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201329719</pqid></control><display><type>article</type><title>Essential Role of Glu-C66 for Menaquinol Oxidation Indicates Transmembrane Electrochemical Potential Generation by Wolinella succinogenes Fumarate Reductase</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>C. Roy D. Lancaster ; Gross, Roland ; Haas, Alexander ; Ritter, Michaela ; Mantele, Werner ; Simon, Jorg ; Kroger, Achim</creator><creatorcontrib>C. Roy D. Lancaster ; Gross, Roland ; Haas, Alexander ; Ritter, Michaela ; Mantele, Werner ; Simon, Jorg ; Kroger, Achim</creatorcontrib><description>Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1- angstrom resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.220425797</identifier><identifier>PMID: 11186225</identifier><language>eng</language><publisher>United States: National Academy of Sciences of the United States of America</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Atoms ; Biochemistry ; Biological Sciences ; Crystal structure ; Crystallography, X-Ray ; Crystals ; Electrochemistry ; Enzymes ; Formates ; Gin ; Glutamic Acid ; Glutamine ; Hydroquinones ; menaquinol ; Models, Molecular ; Mutagenesis, Site-Directed ; Naphthols - metabolism ; Oxidation ; Oxidation-Reduction ; Protein Conformation ; Protein Subunits ; Proteins ; Protons ; Quinol-fumarate reductase ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Succinate Dehydrogenase - chemistry ; Succinate Dehydrogenase - metabolism ; Terpenes - metabolism ; Titration ; Wolinella - enzymology ; Wolinella - growth &amp; development ; Wolinella succinogenes</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2000-11, Vol.97 (24), p.13051-13056</ispartof><rights>Copyright 1993-2000 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Nov 21, 2000</rights><rights>Copyright © 2000, The National Academy of Sciences 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c519t-f104bef4f6d35e945cd623c549c0b63802129bb83d41c0b259ff3b4698b798773</citedby><cites>FETCH-LOGICAL-c519t-f104bef4f6d35e945cd623c549c0b63802129bb83d41c0b259ff3b4698b798773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/97/24.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/123653$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/123653$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,724,777,781,800,882,27905,27906,53772,53774,57998,58231</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11186225$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>C. Roy D. Lancaster</creatorcontrib><creatorcontrib>Gross, Roland</creatorcontrib><creatorcontrib>Haas, Alexander</creatorcontrib><creatorcontrib>Ritter, Michaela</creatorcontrib><creatorcontrib>Mantele, Werner</creatorcontrib><creatorcontrib>Simon, Jorg</creatorcontrib><creatorcontrib>Kroger, Achim</creatorcontrib><title>Essential Role of Glu-C66 for Menaquinol Oxidation Indicates Transmembrane Electrochemical Potential Generation by Wolinella succinogenes Fumarate Reductase</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1- angstrom resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Atoms</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>Crystals</subject><subject>Electrochemistry</subject><subject>Enzymes</subject><subject>Formates</subject><subject>Gin</subject><subject>Glutamic Acid</subject><subject>Glutamine</subject><subject>Hydroquinones</subject><subject>menaquinol</subject><subject>Models, Molecular</subject><subject>Mutagenesis, Site-Directed</subject><subject>Naphthols - metabolism</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Protein Conformation</subject><subject>Protein Subunits</subject><subject>Proteins</subject><subject>Protons</subject><subject>Quinol-fumarate reductase</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Succinate Dehydrogenase - chemistry</subject><subject>Succinate Dehydrogenase - metabolism</subject><subject>Terpenes - metabolism</subject><subject>Titration</subject><subject>Wolinella - enzymology</subject><subject>Wolinella - growth &amp; development</subject><subject>Wolinella succinogenes</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAUhSMEokNhywYJLBaITQb_JY4lNmg0HSoVFVVFLC3HuWkzcuyp7aD2XXhYPJrQAgtWV_L5zvW5OkXxkuAlwYJ92Dkdl5RiTishxaNiQbAkZc0lflwsMKaibDjlR8WzGLcYY1k1-GlxRAhpakqrRfFzHSO4NGiLLrwF5Hu0sVO5qmvU-4C-gNM30-C8Ree3Q6fT4B06dd1gdIKILoN2cYSxzRPQ2oJJwZtrGLNu0Vef5tUbcBAO5vYOffd2cGCtRnEyJi-_ynJEJ9OoMwToArrJJB3hefGk1zbCi3keF99O1perz-XZ-eZ09emsNBWRqewJ5i30vK87VoHklelqykzFpcFtzRpMCZVt27COk_xCK9n3rOW1bFohGyHYcfHxsHc3tSN0JqcO2qpdGHKiO-X1oP5W3HCtrvwPRQURdba_m-3B30wQkxqHaPYHOvBTVEQI3simyeDbf8Ctn4LLpymKCaNSEJmh5QEywccYoL_PQbDad672nav7zrPh9Z_pH_C55Ay8mYG98bcshaJcEYYrkon3_ydUP1mb4DZl9NUB3cbkw8NnlNUVY78AfzvM3Q</recordid><startdate>20001121</startdate><enddate>20001121</enddate><creator>C. Roy D. Lancaster</creator><creator>Gross, Roland</creator><creator>Haas, Alexander</creator><creator>Ritter, Michaela</creator><creator>Mantele, Werner</creator><creator>Simon, Jorg</creator><creator>Kroger, Achim</creator><general>National Academy of Sciences of the United States of America</general><general>National Acad Sciences</general><general>National Academy of Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20001121</creationdate><title>Essential Role of Glu-C66 for Menaquinol Oxidation Indicates Transmembrane Electrochemical Potential Generation by Wolinella succinogenes Fumarate Reductase</title><author>C. Roy D. Lancaster ; Gross, Roland ; Haas, Alexander ; Ritter, Michaela ; Mantele, Werner ; Simon, Jorg ; Kroger, Achim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c519t-f104bef4f6d35e945cd623c549c0b63802129bb83d41c0b259ff3b4698b798773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Atoms</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>Crystals</topic><topic>Electrochemistry</topic><topic>Enzymes</topic><topic>Formates</topic><topic>Gin</topic><topic>Glutamic Acid</topic><topic>Glutamine</topic><topic>Hydroquinones</topic><topic>menaquinol</topic><topic>Models, Molecular</topic><topic>Mutagenesis, Site-Directed</topic><topic>Naphthols - metabolism</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Protein Conformation</topic><topic>Protein Subunits</topic><topic>Proteins</topic><topic>Protons</topic><topic>Quinol-fumarate reductase</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Succinate Dehydrogenase - chemistry</topic><topic>Succinate Dehydrogenase - metabolism</topic><topic>Terpenes - metabolism</topic><topic>Titration</topic><topic>Wolinella - enzymology</topic><topic>Wolinella - growth &amp; development</topic><topic>Wolinella succinogenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>C. Roy D. Lancaster</creatorcontrib><creatorcontrib>Gross, Roland</creatorcontrib><creatorcontrib>Haas, Alexander</creatorcontrib><creatorcontrib>Ritter, Michaela</creatorcontrib><creatorcontrib>Mantele, Werner</creatorcontrib><creatorcontrib>Simon, Jorg</creatorcontrib><creatorcontrib>Kroger, Achim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>C. Roy D. Lancaster</au><au>Gross, Roland</au><au>Haas, Alexander</au><au>Ritter, Michaela</au><au>Mantele, Werner</au><au>Simon, Jorg</au><au>Kroger, Achim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essential Role of Glu-C66 for Menaquinol Oxidation Indicates Transmembrane Electrochemical Potential Generation by Wolinella succinogenes Fumarate Reductase</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2000-11-21</date><risdate>2000</risdate><volume>97</volume><issue>24</issue><spage>13051</spage><epage>13056</epage><pages>13051-13056</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quinol:fumarate reductase (QFR) is a membrane protein complex that couples the reduction of fumarate to succinate to the oxidation of quinol to quinone, in a reaction opposite to that catalyzed by the related enzyme succinate:quinone reductase (succinate dehydrogenase). In the previously determined structure of QFR from Wolinella succinogenes, the site of fumarate reduction in the flavoprotein subunit A of the enzyme was identified, but the site of menaquinol oxidation was not. In the crystal structure, the acidic residue Glu-66 of the membrane spanning, diheme-containing subunit C lines a cavity that could be occupied by the substrate menaquinol. Here we describe that, after replacement of Glu-C66 with Gln by site-directed mutagenesis, the resulting mutant is unable to grow on fumarate and the purified enzyme lacks quinol oxidation activity. X-ray crystal structure analysis of the Glu-C66 → Gln variant enzyme at 3.1- angstrom resolution rules out any major structural changes compared with the wild-type enzyme. The oxidation-reduction potentials of the heme groups are not significantly affected. We conclude that Glu-C66 is an essential constituent of the menaquinol oxidation site. Because Glu-C66 is oriented toward a cavity leading to the periplasm, the release of two protons on menaquinol oxidation is expected to occur to the periplasm, whereas the uptake of two protons on fumarate reduction occurs from the cytoplasm. Thus our results indicate that the reaction catalyzed by W. succinogenes QFR generates a transmembrane electrochemical potential.</abstract><cop>United States</cop><pub>National Academy of Sciences of the United States of America</pub><pmid>11186225</pmid><doi>10.1073/pnas.220425797</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2000-11, Vol.97 (24), p.13051-13056
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201329719
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Amino Acid Substitution
Atoms
Biochemistry
Biological Sciences
Crystal structure
Crystallography, X-Ray
Crystals
Electrochemistry
Enzymes
Formates
Gin
Glutamic Acid
Glutamine
Hydroquinones
menaquinol
Models, Molecular
Mutagenesis, Site-Directed
Naphthols - metabolism
Oxidation
Oxidation-Reduction
Protein Conformation
Protein Subunits
Proteins
Protons
Quinol-fumarate reductase
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Succinate Dehydrogenase - chemistry
Succinate Dehydrogenase - metabolism
Terpenes - metabolism
Titration
Wolinella - enzymology
Wolinella - growth & development
Wolinella succinogenes
title Essential Role of Glu-C66 for Menaquinol Oxidation Indicates Transmembrane Electrochemical Potential Generation by Wolinella succinogenes Fumarate Reductase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T08%3A02%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essential%20Role%20of%20Glu-C66%20for%20Menaquinol%20Oxidation%20Indicates%20Transmembrane%20Electrochemical%20Potential%20Generation%20by%20Wolinella%20succinogenes%20Fumarate%20Reductase&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=C.%20Roy%20D.%20Lancaster&rft.date=2000-11-21&rft.volume=97&rft.issue=24&rft.spage=13051&rft.epage=13056&rft.pages=13051-13056&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.220425797&rft_dat=%3Cjstor_proqu%3E123653%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201329719&rft_id=info:pmid/11186225&rft_jstor_id=123653&rfr_iscdi=true