Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site

A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid-Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods:...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2009-07, Vol.106 (29), p.11862-11866
Hauptverfasser: Ito, Mikinao, Kotera, Mai, Matsumoto, Tsuyoshi, Tatsumi, Kazuyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11866
container_issue 29
container_start_page 11862
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 106
creator Ito, Mikinao
Kotera, Mai
Matsumoto, Tsuyoshi
Tatsumi, Kazuyuki
description A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid-Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)-Ni(II) cation complex [Ni(dadtEt) Ni(tmtu)₂] (OTf)₂(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(dmgBF₂)₂(Me)(Py) (5) to a Ni(II)-Ni(0) complex such as [Ni(dadtEt)Ni(cod)] (3), generated in situ from Ni(dadtEt) and Ni(cod)₂, followed by addition of KSDmp (cod is 1,5-cyclooctadiene; dmgBF₂ is difluoroboryl-dimethylglyoximate). Method ii models the formation of Nip-Me species proposed as a plausible intermediate in ACS catalysis. The reaction of 2 with excess CO affords the acetylthioester CH₃C(O)SDmp (8) with concomitant formation of Ni(dadtEt)Ni(CO)₂ (9) and Ni(CO)₄ plus Ni(dadtEt). When complex 2 is treated with 1 equiv of CO in the presence of excess 1,5-cyclooctadiene, the formation of 9 and Ni(CO)₄ is considerably suppressed, and instead the dinuclear Ni(II)-Ni(0) complex is generated in situ, which further affords 2 upon successive treatment with Co(dmgBF₂)₂(Me)(Py) (5) and KSDmp. These results suggest that (i) ACS catalysis could include the Nid(II)-Nip(0) state as the active species, (ii) The Nid(II)-Nip(0) species could first react with methylcobalamin to afford Nid(II)-Nip(II)-Me, and (iii) CO insertion into the Nip-Me bond and the successive reductive elimination of acetyl-CoA occurs immediately when CoA is coordinated to the Nip site to form the active Nid(II)-Nip(0) species.
doi_str_mv 10.1073/pnas.0900433106
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201327188</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40484048</jstor_id><sourcerecordid>40484048</sourcerecordid><originalsourceid>FETCH-LOGICAL-c589t-c64ad24dbd6c4aca9428bbdd7d83e7dac450c0bd16d87098430917bdfc08fc213</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxVcIREPhzAmwOCBx2Ha89nq9F6QqfEqVOEDPltf2Jg6OHWxv1fz3eEnUABcO1kh-v3map1dVzzFcYOjI5c7LdAE9ACUEA3tQLTD0uGa0h4fVAqDpak4belY9SWkDAH3L4XF1hsukTQuLyry3flLOyIi8VT-MQypsd87cmYS2QRtn_QrltUEpx0nlKRokvUbj5FW2waMw_lalMnnv0DJcobT3eS3T_JftbVm02TytHo3SJfPsOM-rm48fvi8_19dfP31ZXl3XquV9rhWjUjdUD5opKpXsacOHQetOc2I6LRVtQcGgMdO8g55TUsJ2gx4V8FE1mJxX7w6-u2nYGq2Mz1E6sYt2K-NeBGnF34q3a7EKt6LpcNsSWgzeHA1i-DmZlMXWJmWck96EKQnWtcBbRgr4-h9wE6boSzjRACbFj_MCXR4gFUNK0Yz3l2AQc39i7k-c-isbL_8McOKPhRXg7RGYN092TDS9wJizRoyTc9nc5cKi_7AFeXFANimHeM9QoHx-RX910EcZhFxFm8TNtzkgYNZywhj5BZ3FxGg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201327188</pqid></control><display><type>article</type><title>Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ito, Mikinao ; Kotera, Mai ; Matsumoto, Tsuyoshi ; Tatsumi, Kazuyuki</creator><creatorcontrib>Ito, Mikinao ; Kotera, Mai ; Matsumoto, Tsuyoshi ; Tatsumi, Kazuyuki</creatorcontrib><description>A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid-Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)-Ni(II) cation complex [Ni(dadtEt) Ni(tmtu)₂] (OTf)₂(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(dmgBF₂)₂(Me)(Py) (5) to a Ni(II)-Ni(0) complex such as [Ni(dadtEt)Ni(cod)] (3), generated in situ from Ni(dadtEt) and Ni(cod)₂, followed by addition of KSDmp (cod is 1,5-cyclooctadiene; dmgBF₂ is difluoroboryl-dimethylglyoximate). Method ii models the formation of Nip-Me species proposed as a plausible intermediate in ACS catalysis. The reaction of 2 with excess CO affords the acetylthioester CH₃C(O)SDmp (8) with concomitant formation of Ni(dadtEt)Ni(CO)₂ (9) and Ni(CO)₄ plus Ni(dadtEt). When complex 2 is treated with 1 equiv of CO in the presence of excess 1,5-cyclooctadiene, the formation of 9 and Ni(CO)₄ is considerably suppressed, and instead the dinuclear Ni(II)-Ni(0) complex is generated in situ, which further affords 2 upon successive treatment with Co(dmgBF₂)₂(Me)(Py) (5) and KSDmp. These results suggest that (i) ACS catalysis could include the Nid(II)-Nip(0) state as the active species, (ii) The Nid(II)-Nip(0) species could first react with methylcobalamin to afford Nid(II)-Nip(II)-Me, and (iii) CO insertion into the Nip-Me bond and the successive reductive elimination of acetyl-CoA occurs immediately when CoA is coordinated to the Nip site to form the active Nid(II)-Nip(0) species.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0900433106</identifier><identifier>PMID: 19584250</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Active sites ; Aldehyde Oxidoreductases - chemistry ; Aldehyde Oxidoreductases - metabolism ; Bacterial Proteins - chemistry ; Bacterial Proteins - metabolism ; Binding sites ; Carbon monoxide ; Catalysis ; Catalytic Domain ; Coenzymes ; Dehydrogenases ; Enzymes ; Esters - chemistry ; Ligands ; Modeling ; Models, Molecular ; Molecular structure ; Nickel ; Nickel - metabolism ; Physical Sciences ; Reaction mechanisms ; Sulfhydryl Compounds - chemistry ; Sulfur</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (29), p.11862-11866</ispartof><rights>Copyright National Academy of Sciences Jul 21, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c589t-c64ad24dbd6c4aca9428bbdd7d83e7dac450c0bd16d87098430917bdfc08fc213</citedby><cites>FETCH-LOGICAL-c589t-c64ad24dbd6c4aca9428bbdd7d83e7dac450c0bd16d87098430917bdfc08fc213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/106/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40484048$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40484048$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19584250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Mikinao</creatorcontrib><creatorcontrib>Kotera, Mai</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Tatsumi, Kazuyuki</creatorcontrib><title>Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid-Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)-Ni(II) cation complex [Ni(dadtEt) Ni(tmtu)₂] (OTf)₂(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(dmgBF₂)₂(Me)(Py) (5) to a Ni(II)-Ni(0) complex such as [Ni(dadtEt)Ni(cod)] (3), generated in situ from Ni(dadtEt) and Ni(cod)₂, followed by addition of KSDmp (cod is 1,5-cyclooctadiene; dmgBF₂ is difluoroboryl-dimethylglyoximate). Method ii models the formation of Nip-Me species proposed as a plausible intermediate in ACS catalysis. The reaction of 2 with excess CO affords the acetylthioester CH₃C(O)SDmp (8) with concomitant formation of Ni(dadtEt)Ni(CO)₂ (9) and Ni(CO)₄ plus Ni(dadtEt). When complex 2 is treated with 1 equiv of CO in the presence of excess 1,5-cyclooctadiene, the formation of 9 and Ni(CO)₄ is considerably suppressed, and instead the dinuclear Ni(II)-Ni(0) complex is generated in situ, which further affords 2 upon successive treatment with Co(dmgBF₂)₂(Me)(Py) (5) and KSDmp. These results suggest that (i) ACS catalysis could include the Nid(II)-Nip(0) state as the active species, (ii) The Nid(II)-Nip(0) species could first react with methylcobalamin to afford Nid(II)-Nip(II)-Me, and (iii) CO insertion into the Nip-Me bond and the successive reductive elimination of acetyl-CoA occurs immediately when CoA is coordinated to the Nip site to form the active Nid(II)-Nip(0) species.</description><subject>Active sites</subject><subject>Aldehyde Oxidoreductases - chemistry</subject><subject>Aldehyde Oxidoreductases - metabolism</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding sites</subject><subject>Carbon monoxide</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Coenzymes</subject><subject>Dehydrogenases</subject><subject>Enzymes</subject><subject>Esters - chemistry</subject><subject>Ligands</subject><subject>Modeling</subject><subject>Models, Molecular</subject><subject>Molecular structure</subject><subject>Nickel</subject><subject>Nickel - metabolism</subject><subject>Physical Sciences</subject><subject>Reaction mechanisms</subject><subject>Sulfhydryl Compounds - chemistry</subject><subject>Sulfur</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxVcIREPhzAmwOCBx2Ha89nq9F6QqfEqVOEDPltf2Jg6OHWxv1fz3eEnUABcO1kh-v3map1dVzzFcYOjI5c7LdAE9ACUEA3tQLTD0uGa0h4fVAqDpak4belY9SWkDAH3L4XF1hsukTQuLyry3flLOyIi8VT-MQypsd87cmYS2QRtn_QrltUEpx0nlKRokvUbj5FW2waMw_lalMnnv0DJcobT3eS3T_JftbVm02TytHo3SJfPsOM-rm48fvi8_19dfP31ZXl3XquV9rhWjUjdUD5opKpXsacOHQetOc2I6LRVtQcGgMdO8g55TUsJ2gx4V8FE1mJxX7w6-u2nYGq2Mz1E6sYt2K-NeBGnF34q3a7EKt6LpcNsSWgzeHA1i-DmZlMXWJmWck96EKQnWtcBbRgr4-h9wE6boSzjRACbFj_MCXR4gFUNK0Yz3l2AQc39i7k-c-isbL_8McOKPhRXg7RGYN092TDS9wJizRoyTc9nc5cKi_7AFeXFANimHeM9QoHx-RX910EcZhFxFm8TNtzkgYNZywhj5BZ3FxGg</recordid><startdate>20090721</startdate><enddate>20090721</enddate><creator>Ito, Mikinao</creator><creator>Kotera, Mai</creator><creator>Matsumoto, Tsuyoshi</creator><creator>Tatsumi, Kazuyuki</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090721</creationdate><title>Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site</title><author>Ito, Mikinao ; Kotera, Mai ; Matsumoto, Tsuyoshi ; Tatsumi, Kazuyuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c589t-c64ad24dbd6c4aca9428bbdd7d83e7dac450c0bd16d87098430917bdfc08fc213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Active sites</topic><topic>Aldehyde Oxidoreductases - chemistry</topic><topic>Aldehyde Oxidoreductases - metabolism</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding sites</topic><topic>Carbon monoxide</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Coenzymes</topic><topic>Dehydrogenases</topic><topic>Enzymes</topic><topic>Esters - chemistry</topic><topic>Ligands</topic><topic>Modeling</topic><topic>Models, Molecular</topic><topic>Molecular structure</topic><topic>Nickel</topic><topic>Nickel - metabolism</topic><topic>Physical Sciences</topic><topic>Reaction mechanisms</topic><topic>Sulfhydryl Compounds - chemistry</topic><topic>Sulfur</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Mikinao</creatorcontrib><creatorcontrib>Kotera, Mai</creatorcontrib><creatorcontrib>Matsumoto, Tsuyoshi</creatorcontrib><creatorcontrib>Tatsumi, Kazuyuki</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Mikinao</au><au>Kotera, Mai</au><au>Matsumoto, Tsuyoshi</au><au>Tatsumi, Kazuyuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2009-07-21</date><risdate>2009</risdate><volume>106</volume><issue>29</issue><spage>11862</spage><epage>11866</epage><pages>11862-11866</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>A dinuclear nickel complex with methyl and thiolate ligands, Ni(dadtEt)Ni(Me)(SDmp) (2), has been synthesized as a dinuclear Nid-Nip-site model of acetyl-CoA synthase (ACS) (dadtEt is N,N'-diethyl-3,7-diazanonane-1,9-dithiolate; Dmp is 2,6-dimesitylphenyl). Complex 2 was prepared via 2 methods: (i) ligand substitution of a dinuclear Ni(II)-Ni(II) cation complex [Ni(dadtEt) Ni(tmtu)₂] (OTf)₂(1) with MeMgBr and KSDmp (tmtu is tetramethylthiourea), (ii) methyl transfer from methylcobaloxime Co(dmgBF₂)₂(Me)(Py) (5) to a Ni(II)-Ni(0) complex such as [Ni(dadtEt)Ni(cod)] (3), generated in situ from Ni(dadtEt) and Ni(cod)₂, followed by addition of KSDmp (cod is 1,5-cyclooctadiene; dmgBF₂ is difluoroboryl-dimethylglyoximate). Method ii models the formation of Nip-Me species proposed as a plausible intermediate in ACS catalysis. The reaction of 2 with excess CO affords the acetylthioester CH₃C(O)SDmp (8) with concomitant formation of Ni(dadtEt)Ni(CO)₂ (9) and Ni(CO)₄ plus Ni(dadtEt). When complex 2 is treated with 1 equiv of CO in the presence of excess 1,5-cyclooctadiene, the formation of 9 and Ni(CO)₄ is considerably suppressed, and instead the dinuclear Ni(II)-Ni(0) complex is generated in situ, which further affords 2 upon successive treatment with Co(dmgBF₂)₂(Me)(Py) (5) and KSDmp. These results suggest that (i) ACS catalysis could include the Nid(II)-Nip(0) state as the active species, (ii) The Nid(II)-Nip(0) species could first react with methylcobalamin to afford Nid(II)-Nip(II)-Me, and (iii) CO insertion into the Nip-Me bond and the successive reductive elimination of acetyl-CoA occurs immediately when CoA is coordinated to the Nip site to form the active Nid(II)-Nip(0) species.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>19584250</pmid><doi>10.1073/pnas.0900433106</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2009-07, Vol.106 (29), p.11862-11866
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201327188
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Active sites
Aldehyde Oxidoreductases - chemistry
Aldehyde Oxidoreductases - metabolism
Bacterial Proteins - chemistry
Bacterial Proteins - metabolism
Binding sites
Carbon monoxide
Catalysis
Catalytic Domain
Coenzymes
Dehydrogenases
Enzymes
Esters - chemistry
Ligands
Modeling
Models, Molecular
Molecular structure
Nickel
Nickel - metabolism
Physical Sciences
Reaction mechanisms
Sulfhydryl Compounds - chemistry
Sulfur
title Dinuclear nickel complexes modeling the structure and function of the acetyl CoA synthase active site
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T12%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dinuclear%20nickel%20complexes%20modeling%20the%20structure%20and%20function%20of%20the%20acetyl%20CoA%20synthase%20active%20site&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ito,%20Mikinao&rft.date=2009-07-21&rft.volume=106&rft.issue=29&rft.spage=11862&rft.epage=11866&rft.pages=11862-11866&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0900433106&rft_dat=%3Cjstor_proqu%3E40484048%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201327188&rft_id=info:pmid/19584250&rft_jstor_id=40484048&rfr_iscdi=true