Designing an extracellular matrix protein with enhanced mechanical stability
The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these doma...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (23), p.9633-9637 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9637 |
---|---|
container_issue | 23 |
container_start_page | 9633 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 104 |
creator | Ng, Sean P Billings, Kate S Ohashi, Tomoo Allen, Mark D Best, Robert B Randles, Lucy G Erickson, Harold P Clarke, Jane |
description | The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions. |
doi_str_mv | 10.1073/pnas.0609901104 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201325435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427911</jstor_id><sourcerecordid>25427911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIekBc0o7tOLYvlaryKa3EAXq2vI6z65XjLLYD7X-Pw666wAFOtjS_eXpvHkLPMZxj4PRiF3Q6hxakBIyheYAWGCSu20bCQ7QAILwWDWlO0JOUtgAgmYDH6ARzRpkkeIGWb21y6-DCutKhsrc5amO9n7yO1aBzdLfVLo7ZulD9cHlT2bDRwdiuGqwpP2e0r1LWK-ddvnuKHvXaJ_vs8J6im_fvvl5_rJefP3y6vlrWhjGSaykbgJb1vNOM0JZL0RlKpKEtkS1joiTpfznFjAixMhqLBpfNXndQhpqeosu97m5aDbYzNhTbXu2iG3S8U6N26s9JcBu1Hr8rLAQvQkXg9UEgjt8mm7IaXJpz62DHKSkOjFMm5H9BLFtRTikKePYXuB2nGMoVFAFMCWsoK9DFHjJxTCna_t4yBjX3qeY-1bHPsvHy96RH_lBgAd4cgHnzKNcoQpVsKVX95H0uxRb01b_RQrzYE9uUx3iPFPOES4yPCr0elV5Hl9TNlzkeABeYY0Z_Arogxdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201325435</pqid></control><display><type>article</type><title>Designing an extracellular matrix protein with enhanced mechanical stability</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ng, Sean P ; Billings, Kate S ; Ohashi, Tomoo ; Allen, Mark D ; Best, Robert B ; Randles, Lucy G ; Erickson, Harold P ; Clarke, Jane</creator><creatorcontrib>Ng, Sean P ; Billings, Kate S ; Ohashi, Tomoo ; Allen, Mark D ; Best, Robert B ; Randles, Lucy G ; Erickson, Harold P ; Clarke, Jane</creatorcontrib><description>The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0609901104</identifier><identifier>PMID: 17535921</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Atomic force microscopy ; Biochemistry ; Biological Sciences ; Biophysical Phenomena ; Biophysics ; Cell adhesion ; Cell Adhesion - physiology ; Crystal structure ; Crystallization ; Extracellular matrix proteins ; Fibronectins - chemistry ; Fibronectins - genetics ; Fibronectins - physiology ; Genetic engineering ; Humans ; Integrins ; Mechanical engineering ; Medical research ; Microscopy ; Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Polyproteins ; Protein Conformation ; Protein engineering ; Protein Engineering - methods ; Protein Structure, Tertiary ; Proteins ; Sequence Alignment ; Solvents ; Tenascin - chemistry ; Tenascin - genetics ; Tenascin - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (23), p.9633-9637</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 5, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</citedby><cites>FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427911$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427911$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17535921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Sean P</creatorcontrib><creatorcontrib>Billings, Kate S</creatorcontrib><creatorcontrib>Ohashi, Tomoo</creatorcontrib><creatorcontrib>Allen, Mark D</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><creatorcontrib>Randles, Lucy G</creatorcontrib><creatorcontrib>Erickson, Harold P</creatorcontrib><creatorcontrib>Clarke, Jane</creatorcontrib><title>Designing an extracellular matrix protein with enhanced mechanical stability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.</description><subject>Amino Acid Sequence</subject><subject>Atomic force microscopy</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Extracellular matrix proteins</subject><subject>Fibronectins - chemistry</subject><subject>Fibronectins - genetics</subject><subject>Fibronectins - physiology</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Integrins</subject><subject>Mechanical engineering</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Polyproteins</subject><subject>Protein Conformation</subject><subject>Protein engineering</subject><subject>Protein Engineering - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Sequence Alignment</subject><subject>Solvents</subject><subject>Tenascin - chemistry</subject><subject>Tenascin - genetics</subject><subject>Tenascin - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAmIekBc0o7tOLYvlaryKa3EAXq2vI6z65XjLLYD7X-Pw666wAFOtjS_eXpvHkLPMZxj4PRiF3Q6hxakBIyheYAWGCSu20bCQ7QAILwWDWlO0JOUtgAgmYDH6ARzRpkkeIGWb21y6-DCutKhsrc5amO9n7yO1aBzdLfVLo7ZulD9cHlT2bDRwdiuGqwpP2e0r1LWK-ddvnuKHvXaJ_vs8J6im_fvvl5_rJefP3y6vlrWhjGSaykbgJb1vNOM0JZL0RlKpKEtkS1joiTpfznFjAixMhqLBpfNXndQhpqeosu97m5aDbYzNhTbXu2iG3S8U6N26s9JcBu1Hr8rLAQvQkXg9UEgjt8mm7IaXJpz62DHKSkOjFMm5H9BLFtRTikKePYXuB2nGMoVFAFMCWsoK9DFHjJxTCna_t4yBjX3qeY-1bHPsvHy96RH_lBgAd4cgHnzKNcoQpVsKVX95H0uxRb01b_RQrzYE9uUx3iPFPOES4yPCr0elV5Hl9TNlzkeABeYY0Z_Arogxdw</recordid><startdate>20070605</startdate><enddate>20070605</enddate><creator>Ng, Sean P</creator><creator>Billings, Kate S</creator><creator>Ohashi, Tomoo</creator><creator>Allen, Mark D</creator><creator>Best, Robert B</creator><creator>Randles, Lucy G</creator><creator>Erickson, Harold P</creator><creator>Clarke, Jane</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070605</creationdate><title>Designing an extracellular matrix protein with enhanced mechanical stability</title><author>Ng, Sean P ; Billings, Kate S ; Ohashi, Tomoo ; Allen, Mark D ; Best, Robert B ; Randles, Lucy G ; Erickson, Harold P ; Clarke, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Atomic force microscopy</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Extracellular matrix proteins</topic><topic>Fibronectins - chemistry</topic><topic>Fibronectins - genetics</topic><topic>Fibronectins - physiology</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Integrins</topic><topic>Mechanical engineering</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Polyproteins</topic><topic>Protein Conformation</topic><topic>Protein engineering</topic><topic>Protein Engineering - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Sequence Alignment</topic><topic>Solvents</topic><topic>Tenascin - chemistry</topic><topic>Tenascin - genetics</topic><topic>Tenascin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Sean P</creatorcontrib><creatorcontrib>Billings, Kate S</creatorcontrib><creatorcontrib>Ohashi, Tomoo</creatorcontrib><creatorcontrib>Allen, Mark D</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><creatorcontrib>Randles, Lucy G</creatorcontrib><creatorcontrib>Erickson, Harold P</creatorcontrib><creatorcontrib>Clarke, Jane</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Sean P</au><au>Billings, Kate S</au><au>Ohashi, Tomoo</au><au>Allen, Mark D</au><au>Best, Robert B</au><au>Randles, Lucy G</au><au>Erickson, Harold P</au><au>Clarke, Jane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing an extracellular matrix protein with enhanced mechanical stability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-05</date><risdate>2007</risdate><volume>104</volume><issue>23</issue><spage>9633</spage><epage>9637</epage><pages>9633-9637</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17535921</pmid><doi>10.1073/pnas.0609901104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (23), p.9633-9637 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201325435 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Atomic force microscopy Biochemistry Biological Sciences Biophysical Phenomena Biophysics Cell adhesion Cell Adhesion - physiology Crystal structure Crystallization Extracellular matrix proteins Fibronectins - chemistry Fibronectins - genetics Fibronectins - physiology Genetic engineering Humans Integrins Mechanical engineering Medical research Microscopy Microscopy, Atomic Force Models, Molecular Molecular Sequence Data Mutation - genetics Polyproteins Protein Conformation Protein engineering Protein Engineering - methods Protein Structure, Tertiary Proteins Sequence Alignment Solvents Tenascin - chemistry Tenascin - genetics Tenascin - physiology |
title | Designing an extracellular matrix protein with enhanced mechanical stability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20an%20extracellular%20matrix%20protein%20with%20enhanced%20mechanical%20stability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ng,%20Sean%20P&rft.date=2007-06-05&rft.volume=104&rft.issue=23&rft.spage=9633&rft.epage=9637&rft.pages=9633-9637&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0609901104&rft_dat=%3Cjstor_proqu%3E25427911%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201325435&rft_id=info:pmid/17535921&rft_jstor_id=25427911&rfr_iscdi=true |