Designing an extracellular matrix protein with enhanced mechanical stability

The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these doma...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-06, Vol.104 (23), p.9633-9637
Hauptverfasser: Ng, Sean P, Billings, Kate S, Ohashi, Tomoo, Allen, Mark D, Best, Robert B, Randles, Lucy G, Erickson, Harold P, Clarke, Jane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9637
container_issue 23
container_start_page 9633
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Ng, Sean P
Billings, Kate S
Ohashi, Tomoo
Allen, Mark D
Best, Robert B
Randles, Lucy G
Erickson, Harold P
Clarke, Jane
description The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.
doi_str_mv 10.1073/pnas.0609901104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201325435</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25427911</jstor_id><sourcerecordid>25427911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</originalsourceid><addsrcrecordid>eNqFkc1v1DAQxS0EokvhzAmIekBc0o7tOLYvlaryKa3EAXq2vI6z65XjLLYD7X-Pw666wAFOtjS_eXpvHkLPMZxj4PRiF3Q6hxakBIyheYAWGCSu20bCQ7QAILwWDWlO0JOUtgAgmYDH6ARzRpkkeIGWb21y6-DCutKhsrc5amO9n7yO1aBzdLfVLo7ZulD9cHlT2bDRwdiuGqwpP2e0r1LWK-ddvnuKHvXaJ_vs8J6im_fvvl5_rJefP3y6vlrWhjGSaykbgJb1vNOM0JZL0RlKpKEtkS1joiTpfznFjAixMhqLBpfNXndQhpqeosu97m5aDbYzNhTbXu2iG3S8U6N26s9JcBu1Hr8rLAQvQkXg9UEgjt8mm7IaXJpz62DHKSkOjFMm5H9BLFtRTikKePYXuB2nGMoVFAFMCWsoK9DFHjJxTCna_t4yBjX3qeY-1bHPsvHy96RH_lBgAd4cgHnzKNcoQpVsKVX95H0uxRb01b_RQrzYE9uUx3iPFPOES4yPCr0elV5Hl9TNlzkeABeYY0Z_Arogxdw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201325435</pqid></control><display><type>article</type><title>Designing an extracellular matrix protein with enhanced mechanical stability</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ng, Sean P ; Billings, Kate S ; Ohashi, Tomoo ; Allen, Mark D ; Best, Robert B ; Randles, Lucy G ; Erickson, Harold P ; Clarke, Jane</creator><creatorcontrib>Ng, Sean P ; Billings, Kate S ; Ohashi, Tomoo ; Allen, Mark D ; Best, Robert B ; Randles, Lucy G ; Erickson, Harold P ; Clarke, Jane</creatorcontrib><description>The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0609901104</identifier><identifier>PMID: 17535921</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Atomic force microscopy ; Biochemistry ; Biological Sciences ; Biophysical Phenomena ; Biophysics ; Cell adhesion ; Cell Adhesion - physiology ; Crystal structure ; Crystallization ; Extracellular matrix proteins ; Fibronectins - chemistry ; Fibronectins - genetics ; Fibronectins - physiology ; Genetic engineering ; Humans ; Integrins ; Mechanical engineering ; Medical research ; Microscopy ; Microscopy, Atomic Force ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Polyproteins ; Protein Conformation ; Protein engineering ; Protein Engineering - methods ; Protein Structure, Tertiary ; Proteins ; Sequence Alignment ; Solvents ; Tenascin - chemistry ; Tenascin - genetics ; Tenascin - physiology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (23), p.9633-9637</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jun 5, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</citedby><cites>FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/23.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25427911$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25427911$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17535921$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ng, Sean P</creatorcontrib><creatorcontrib>Billings, Kate S</creatorcontrib><creatorcontrib>Ohashi, Tomoo</creatorcontrib><creatorcontrib>Allen, Mark D</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><creatorcontrib>Randles, Lucy G</creatorcontrib><creatorcontrib>Erickson, Harold P</creatorcontrib><creatorcontrib>Clarke, Jane</creatorcontrib><title>Designing an extracellular matrix protein with enhanced mechanical stability</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.</description><subject>Amino Acid Sequence</subject><subject>Atomic force microscopy</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cell adhesion</subject><subject>Cell Adhesion - physiology</subject><subject>Crystal structure</subject><subject>Crystallization</subject><subject>Extracellular matrix proteins</subject><subject>Fibronectins - chemistry</subject><subject>Fibronectins - genetics</subject><subject>Fibronectins - physiology</subject><subject>Genetic engineering</subject><subject>Humans</subject><subject>Integrins</subject><subject>Mechanical engineering</subject><subject>Medical research</subject><subject>Microscopy</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Polyproteins</subject><subject>Protein Conformation</subject><subject>Protein engineering</subject><subject>Protein Engineering - methods</subject><subject>Protein Structure, Tertiary</subject><subject>Proteins</subject><subject>Sequence Alignment</subject><subject>Solvents</subject><subject>Tenascin - chemistry</subject><subject>Tenascin - genetics</subject><subject>Tenascin - physiology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v1DAQxS0EokvhzAmIekBc0o7tOLYvlaryKa3EAXq2vI6z65XjLLYD7X-Pw666wAFOtjS_eXpvHkLPMZxj4PRiF3Q6hxakBIyheYAWGCSu20bCQ7QAILwWDWlO0JOUtgAgmYDH6ARzRpkkeIGWb21y6-DCutKhsrc5amO9n7yO1aBzdLfVLo7ZulD9cHlT2bDRwdiuGqwpP2e0r1LWK-ddvnuKHvXaJ_vs8J6im_fvvl5_rJefP3y6vlrWhjGSaykbgJb1vNOM0JZL0RlKpKEtkS1joiTpfznFjAixMhqLBpfNXndQhpqeosu97m5aDbYzNhTbXu2iG3S8U6N26s9JcBu1Hr8rLAQvQkXg9UEgjt8mm7IaXJpz62DHKSkOjFMm5H9BLFtRTikKePYXuB2nGMoVFAFMCWsoK9DFHjJxTCna_t4yBjX3qeY-1bHPsvHy96RH_lBgAd4cgHnzKNcoQpVsKVX95H0uxRb01b_RQrzYE9uUx3iPFPOES4yPCr0elV5Hl9TNlzkeABeYY0Z_Arogxdw</recordid><startdate>20070605</startdate><enddate>20070605</enddate><creator>Ng, Sean P</creator><creator>Billings, Kate S</creator><creator>Ohashi, Tomoo</creator><creator>Allen, Mark D</creator><creator>Best, Robert B</creator><creator>Randles, Lucy G</creator><creator>Erickson, Harold P</creator><creator>Clarke, Jane</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070605</creationdate><title>Designing an extracellular matrix protein with enhanced mechanical stability</title><author>Ng, Sean P ; Billings, Kate S ; Ohashi, Tomoo ; Allen, Mark D ; Best, Robert B ; Randles, Lucy G ; Erickson, Harold P ; Clarke, Jane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-9940065f7da5236798dc329c36296558110f0958015288bca1841552fad0811a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Amino Acid Sequence</topic><topic>Atomic force microscopy</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cell adhesion</topic><topic>Cell Adhesion - physiology</topic><topic>Crystal structure</topic><topic>Crystallization</topic><topic>Extracellular matrix proteins</topic><topic>Fibronectins - chemistry</topic><topic>Fibronectins - genetics</topic><topic>Fibronectins - physiology</topic><topic>Genetic engineering</topic><topic>Humans</topic><topic>Integrins</topic><topic>Mechanical engineering</topic><topic>Medical research</topic><topic>Microscopy</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Polyproteins</topic><topic>Protein Conformation</topic><topic>Protein engineering</topic><topic>Protein Engineering - methods</topic><topic>Protein Structure, Tertiary</topic><topic>Proteins</topic><topic>Sequence Alignment</topic><topic>Solvents</topic><topic>Tenascin - chemistry</topic><topic>Tenascin - genetics</topic><topic>Tenascin - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ng, Sean P</creatorcontrib><creatorcontrib>Billings, Kate S</creatorcontrib><creatorcontrib>Ohashi, Tomoo</creatorcontrib><creatorcontrib>Allen, Mark D</creatorcontrib><creatorcontrib>Best, Robert B</creatorcontrib><creatorcontrib>Randles, Lucy G</creatorcontrib><creatorcontrib>Erickson, Harold P</creatorcontrib><creatorcontrib>Clarke, Jane</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ng, Sean P</au><au>Billings, Kate S</au><au>Ohashi, Tomoo</au><au>Allen, Mark D</au><au>Best, Robert B</au><au>Randles, Lucy G</au><au>Erickson, Harold P</au><au>Clarke, Jane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Designing an extracellular matrix protein with enhanced mechanical stability</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-06-05</date><risdate>2007</risdate><volume>104</volume><issue>23</issue><spage>9633</spage><epage>9637</epage><pages>9633-9637</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The extracellular matrix proteins tenascin and fibronectin experience significant mechanical forces in vivo. Both contain a number of tandem repeating homologous fibronectin type III (fnIII) domains, and atomic force microscopy experiments have demonstrated that the mechanical strength of these domains can vary significantly. Previous work has shown that mutations in the core of an fnIII domain from human tenascin (TNfn3) reduce the unfolding force of that domain significantly: The composition of the core is apparently crucial to the mechanical stability of these proteins. Based on these results, we have used rational redesign to increase the mechanical stability of the 10th fnIII domain of human fibronectin, FNfn10, which is directly involved in integrin binding. The hydrophobic core of FNfn10 was replaced with that of the homologous, mechanically stronger TNfn3 domain. Despite the extensive substitution, FNoTNc retains both the three-dimensional structure and the cell adhesion activity of FNfn10. Atomic force microscopy experiments reveal that the unfolding forces of the engineered protein FNoTNc increase by [almost equal to]20% to match those of TNfn3. Thus, we have specifically designed a protein with increased mechanical stability. Our results demonstrate that core engineering can be used to change the mechanical strength of proteins while retaining functional surface interactions.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17535921</pmid><doi>10.1073/pnas.0609901104</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-06, Vol.104 (23), p.9633-9637
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201325435
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Atomic force microscopy
Biochemistry
Biological Sciences
Biophysical Phenomena
Biophysics
Cell adhesion
Cell Adhesion - physiology
Crystal structure
Crystallization
Extracellular matrix proteins
Fibronectins - chemistry
Fibronectins - genetics
Fibronectins - physiology
Genetic engineering
Humans
Integrins
Mechanical engineering
Medical research
Microscopy
Microscopy, Atomic Force
Models, Molecular
Molecular Sequence Data
Mutation - genetics
Polyproteins
Protein Conformation
Protein engineering
Protein Engineering - methods
Protein Structure, Tertiary
Proteins
Sequence Alignment
Solvents
Tenascin - chemistry
Tenascin - genetics
Tenascin - physiology
title Designing an extracellular matrix protein with enhanced mechanical stability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T14%3A16%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Designing%20an%20extracellular%20matrix%20protein%20with%20enhanced%20mechanical%20stability&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ng,%20Sean%20P&rft.date=2007-06-05&rft.volume=104&rft.issue=23&rft.spage=9633&rft.epage=9637&rft.pages=9633-9637&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0609901104&rft_dat=%3Cjstor_proqu%3E25427911%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201325435&rft_id=info:pmid/17535921&rft_jstor_id=25427911&rfr_iscdi=true