Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water

We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-lik...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2007-01, Vol.104 (3), p.733-738
Hauptverfasser: Athawale, Manoj V, Goel, Gaurav, Ghosh, Tuhin, Truskett, Thomas M, Garde, Shekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 738
container_issue 3
container_start_page 733
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 104
creator Athawale, Manoj V
Goel, Gaurav
Ghosh, Tuhin
Truskett, Thomas M
Garde, Shekhar
description We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer-water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer-water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor-liquid interface.
doi_str_mv 10.1073/pnas.0605139104
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201320186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25426176</jstor_id><sourcerecordid>25426176</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-1467c3a57474af16fbc653bc14c83f7385dbfb6146202a93cb6f861cb844e9753</originalsourceid><addsrcrecordid>eNptkc9rFDEcxYModl09e1JDD96mza9JZi4FKdUKhR604C1kssnOLNlkTDLq_vfNsEu3lQZCDu_zfXxfHgDvMTrDSNDz0at0hjiqMW0xYi_AAqMWV5y16CVYIERE1TDCTsCblDYIobZu0GtwggXBNa3JAvy6stbonGCw0Bm_zn3SypkElV9BlXNUOg_BF93D3Buog3NqTGbm-90qhrEP3aDhGNxua2KCg4d_VTbxLXhllUvm3eFdgruvVz8vr6ub22_fL7_cVLpmJFeYcaGpqgUTTFnMbad5TTuNmW6oFbSpV53teMEIIqqluuO24Vh3DWOmFTVdgou97zh1W7PSxpednRzjsFVxJ4Ma5FPFD71chz8SC85pOUvw-WAQw-_JpCy3Q9KmxPQmTEnypiW4JaSAp_-BmzBFX8JJgjAtt-EFOt9DOoaUorEPm2Ak58rkXJk8VlYmPj4OcOQPHRXgwwGYJ492TFIpngR4Vpd2ci6bf_lotEk5xAeSlCJ4-Y2if9rrVgWp1nFI8u7HHA2VvVvBKL0Hx169JA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201320186</pqid></control><display><type>article</type><title>Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Athawale, Manoj V ; Goel, Gaurav ; Ghosh, Tuhin ; Truskett, Thomas M ; Garde, Shekhar</creator><creatorcontrib>Athawale, Manoj V ; Goel, Gaurav ; Ghosh, Tuhin ; Truskett, Thomas M ; Garde, Shekhar</creatorcontrib><description>We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer-water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer-water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor-liquid interface.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0605139104</identifier><identifier>PMID: 17215352</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Entropy ; Free energy ; Hydrophobic and Hydrophilic Interactions ; Interfacial tension ; Modeling ; Molecular biology ; Monomers ; Physical Sciences ; Physics ; Polymers ; Polymers - chemistry ; Protein folding ; Simulation ; Solutes ; Temperature dependence ; Thermodynamics ; Water - chemistry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (3), p.733-738</ispartof><rights>Copyright 2007 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jan 16, 2007</rights><rights>2007 by The National Academy of Sciences of the USA 2007</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-1467c3a57474af16fbc653bc14c83f7385dbfb6146202a93cb6f861cb844e9753</citedby><cites>FETCH-LOGICAL-c542t-1467c3a57474af16fbc653bc14c83f7385dbfb6146202a93cb6f861cb844e9753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/104/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25426176$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25426176$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17215352$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Athawale, Manoj V</creatorcontrib><creatorcontrib>Goel, Gaurav</creatorcontrib><creatorcontrib>Ghosh, Tuhin</creatorcontrib><creatorcontrib>Truskett, Thomas M</creatorcontrib><creatorcontrib>Garde, Shekhar</creatorcontrib><title>Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer-water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer-water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor-liquid interface.</description><subject>Entropy</subject><subject>Free energy</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Interfacial tension</subject><subject>Modeling</subject><subject>Molecular biology</subject><subject>Monomers</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Polymers</subject><subject>Polymers - chemistry</subject><subject>Protein folding</subject><subject>Simulation</subject><subject>Solutes</subject><subject>Temperature dependence</subject><subject>Thermodynamics</subject><subject>Water - chemistry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkc9rFDEcxYModl09e1JDD96mza9JZi4FKdUKhR604C1kssnOLNlkTDLq_vfNsEu3lQZCDu_zfXxfHgDvMTrDSNDz0at0hjiqMW0xYi_AAqMWV5y16CVYIERE1TDCTsCblDYIobZu0GtwggXBNa3JAvy6stbonGCw0Bm_zn3SypkElV9BlXNUOg_BF93D3Buog3NqTGbm-90qhrEP3aDhGNxua2KCg4d_VTbxLXhllUvm3eFdgruvVz8vr6ub22_fL7_cVLpmJFeYcaGpqgUTTFnMbad5TTuNmW6oFbSpV53teMEIIqqluuO24Vh3DWOmFTVdgou97zh1W7PSxpednRzjsFVxJ4Ma5FPFD71chz8SC85pOUvw-WAQw-_JpCy3Q9KmxPQmTEnypiW4JaSAp_-BmzBFX8JJgjAtt-EFOt9DOoaUorEPm2Ak58rkXJk8VlYmPj4OcOQPHRXgwwGYJ492TFIpngR4Vpd2ci6bf_lotEk5xAeSlCJ4-Y2if9rrVgWp1nFI8u7HHA2VvVvBKL0Hx169JA</recordid><startdate>20070116</startdate><enddate>20070116</enddate><creator>Athawale, Manoj V</creator><creator>Goel, Gaurav</creator><creator>Ghosh, Tuhin</creator><creator>Truskett, Thomas M</creator><creator>Garde, Shekhar</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20070116</creationdate><title>Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water</title><author>Athawale, Manoj V ; Goel, Gaurav ; Ghosh, Tuhin ; Truskett, Thomas M ; Garde, Shekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-1467c3a57474af16fbc653bc14c83f7385dbfb6146202a93cb6f861cb844e9753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Entropy</topic><topic>Free energy</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Interfacial tension</topic><topic>Modeling</topic><topic>Molecular biology</topic><topic>Monomers</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Polymers</topic><topic>Polymers - chemistry</topic><topic>Protein folding</topic><topic>Simulation</topic><topic>Solutes</topic><topic>Temperature dependence</topic><topic>Thermodynamics</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Athawale, Manoj V</creatorcontrib><creatorcontrib>Goel, Gaurav</creatorcontrib><creatorcontrib>Ghosh, Tuhin</creatorcontrib><creatorcontrib>Truskett, Thomas M</creatorcontrib><creatorcontrib>Garde, Shekhar</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Athawale, Manoj V</au><au>Goel, Gaurav</au><au>Ghosh, Tuhin</au><au>Truskett, Thomas M</au><au>Garde, Shekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2007-01-16</date><risdate>2007</risdate><volume>104</volume><issue>3</issue><spage>733</spage><epage>738</epage><pages>733-738</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>We present results from extensive molecular dynamics simulations of collapse transitions of hydrophobic polymers in explicit water focused on understanding effects of lengthscale of the hydrophobic surface and of attractive interactions on folding. Hydrophobic polymers display parabolic, protein-like, temperature-dependent free energy of unfolding. Folded states of small attractive polymers are marginally stable at 300 K and can be unfolded by heating or cooling. Increasing the lengthscale or decreasing the polymer-water attractions stabilizes folded states significantly, the former dominated by the hydration contribution. That hydration contribution can be described by the surface tension model, ΔG = γ(T)ΔA, where the surface tension, γ, is lengthscale-dependent and decreases monotonically with temperature. The resulting variation of the hydration entropy with polymer lengthscale is consistent with theoretical predictions of Huang and Chandler [Huang DM, Chandler D (2000) Proc Natl Acad Sci USA 97:] that explain the blurring of entropy convergence observed in protein folding thermodynamics. Analysis of water structure shows that the polymer-water hydrophobic interface is soft and weakly dewetted, and is characterized by enhanced interfacial density fluctuations. Formation of this interface, which induces polymer folding, is strongly opposed by enthalpy and favored by entropy, similar to the vapor-liquid interface.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>17215352</pmid><doi>10.1073/pnas.0605139104</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2007-01, Vol.104 (3), p.733-738
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201320186
source Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Entropy
Free energy
Hydrophobic and Hydrophilic Interactions
Interfacial tension
Modeling
Molecular biology
Monomers
Physical Sciences
Physics
Polymers
Polymers - chemistry
Protein folding
Simulation
Solutes
Temperature dependence
Thermodynamics
Water - chemistry
title Effects of lengthscales and attractions on the collapse of hydrophobic polymers in water
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T15%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20lengthscales%20and%20attractions%20on%20the%20collapse%20of%20hydrophobic%20polymers%20in%20water&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Athawale,%20Manoj%20V&rft.date=2007-01-16&rft.volume=104&rft.issue=3&rft.spage=733&rft.epage=738&rft.pages=733-738&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0605139104&rft_dat=%3Cjstor_proqu%3E25426176%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201320186&rft_id=info:pmid/17215352&rft_jstor_id=25426176&rfr_iscdi=true