Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex
Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for [almost equal to]75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding α1-syntrophin, was performed in a cohort of LQTS patients that were negative f...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2008-07, Vol.105 (27), p.9355-9360 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9360 |
---|---|
container_issue | 27 |
container_start_page | 9355 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 105 |
creator | Ueda, Kazuo Valdivia, Carmen Medeiros-Domingo, Argelia Tester, David J Vatta, Matteo Farrugia, Gianrico Ackerman, Michael J Makielski, Jonathan C |
description | Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for [almost equal to]75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding α1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene. |
doi_str_mv | 10.1073/pnas.0801294105 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201288356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25462973</jstor_id><sourcerecordid>25462973</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-a2721f166956955c7046f3d70a667263516ce19bf820b41b8b058abdfaee068c3</originalsourceid><addsrcrecordid>eNp9ks1r3DAQxU1paTZpzz21FT2UXpyMZEmWL4Ww9AtCQtnkLGRZXnuRLVeS0-x_Hy27ZNseCgKB9JunefOUZW8wnGMoi4tpVOEcBGBSUQzsWbbAUOGc0wqeZwsAUuaCEnqSnYawAYCKCXiZnWDBKsw5XWTTajtG76auH9EwRxV7NyIVgtO9iqZBv_vYIevGNfp5i8J2bLwbDIqdd_O6Q0rH_n5f49p0atB4fbPKV8trdokGpRPsrNGzVR5pN0zWPLzKXrTKBvP6sJ9ld1-_3C6_51c3334sL69yzRiJuSIlwW3qsWJpMV0C5W3RlKA4LwkvGOba4KpuBYGa4lrUwISqm1YZA1zo4iz7vNed5nowjTbJprJy8v2g_FY61cu_b8a-k2t3LwmlBJMyCXw8CHj3azYhyqEP2lirRuPmIAkIhtMUE_jhH3DjZj8mc4nBRIiC7aCLPZRmEoI37VMnGOQuSrmLUh6jTBXv_jRw5A_ZJeD9AdhVHuWYJKWsCraT-PR_QraztdE8xIS-3aObEJ1_YgmjnFRlcXysVU6qte-DvFsle0X6U5jikhaPfn3GqQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201288356</pqid></control><display><type>article</type><title>Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ueda, Kazuo ; Valdivia, Carmen ; Medeiros-Domingo, Argelia ; Tester, David J ; Vatta, Matteo ; Farrugia, Gianrico ; Ackerman, Michael J ; Makielski, Jonathan C</creator><creatorcontrib>Ueda, Kazuo ; Valdivia, Carmen ; Medeiros-Domingo, Argelia ; Tester, David J ; Vatta, Matteo ; Farrugia, Gianrico ; Ackerman, Michael J ; Makielski, Jonathan C</creatorcontrib><description>Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for [almost equal to]75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding α1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0801294105</identifier><identifier>PMID: 18591664</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adult ; Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Antibodies ; Biological Sciences ; Calcium-Binding Proteins - chemistry ; Calcium-Binding Proteins - genetics ; Cell Line ; Cellular biology ; DNA ; Enzyme Activation ; Female ; Gene expression ; Gene expression regulation ; Genes ; Genetic mutation ; Genetic Predisposition to Disease ; Genotype ; Heart ; Humans ; Ion Channel Gating ; Ion channels ; Long QT syndrome ; Long QT Syndrome - enzymology ; Long QT Syndrome - genetics ; Macromolecular Substances - metabolism ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Mice ; Molecular Sequence Data ; Muscle Proteins - chemistry ; Muscle Proteins - genetics ; Muscle Proteins - metabolism ; Mutant Proteins - metabolism ; Mutation ; Mutation - genetics ; Myocytes, Cardiac - metabolism ; Myocytes, Cardiac - pathology ; NAV1.5 Voltage-Gated Sodium Channel ; Nitric oxide ; Nitric Oxide Synthase Type I - metabolism ; Oxides ; Plasma Membrane Calcium-Transporting ATPases - metabolism ; Proteins ; Sodium ; Sodium channels ; Sodium Channels - chemistry ; Sodium Channels - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2008-07, Vol.105 (27), p.9355-9360</ispartof><rights>Copyright 2008 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 8, 2008</rights><rights>2008 by The National Academy of Sciences of the USA</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-a2721f166956955c7046f3d70a667263516ce19bf820b41b8b058abdfaee068c3</citedby><cites>FETCH-LOGICAL-c552t-a2721f166956955c7046f3d70a667263516ce19bf820b41b8b058abdfaee068c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/105/27.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25462973$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25462973$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,27924,27925,53791,53793,58017,58250</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18591664$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ueda, Kazuo</creatorcontrib><creatorcontrib>Valdivia, Carmen</creatorcontrib><creatorcontrib>Medeiros-Domingo, Argelia</creatorcontrib><creatorcontrib>Tester, David J</creatorcontrib><creatorcontrib>Vatta, Matteo</creatorcontrib><creatorcontrib>Farrugia, Gianrico</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Makielski, Jonathan C</creatorcontrib><title>Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for [almost equal to]75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding α1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.</description><subject>Adult</subject><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Antibodies</subject><subject>Biological Sciences</subject><subject>Calcium-Binding Proteins - chemistry</subject><subject>Calcium-Binding Proteins - genetics</subject><subject>Cell Line</subject><subject>Cellular biology</subject><subject>DNA</subject><subject>Enzyme Activation</subject><subject>Female</subject><subject>Gene expression</subject><subject>Gene expression regulation</subject><subject>Genes</subject><subject>Genetic mutation</subject><subject>Genetic Predisposition to Disease</subject><subject>Genotype</subject><subject>Heart</subject><subject>Humans</subject><subject>Ion Channel Gating</subject><subject>Ion channels</subject><subject>Long QT syndrome</subject><subject>Long QT Syndrome - enzymology</subject><subject>Long QT Syndrome - genetics</subject><subject>Macromolecular Substances - metabolism</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Mice</subject><subject>Molecular Sequence Data</subject><subject>Muscle Proteins - chemistry</subject><subject>Muscle Proteins - genetics</subject><subject>Muscle Proteins - metabolism</subject><subject>Mutant Proteins - metabolism</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Myocytes, Cardiac - metabolism</subject><subject>Myocytes, Cardiac - pathology</subject><subject>NAV1.5 Voltage-Gated Sodium Channel</subject><subject>Nitric oxide</subject><subject>Nitric Oxide Synthase Type I - metabolism</subject><subject>Oxides</subject><subject>Plasma Membrane Calcium-Transporting ATPases - metabolism</subject><subject>Proteins</subject><subject>Sodium</subject><subject>Sodium channels</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9ks1r3DAQxU1paTZpzz21FT2UXpyMZEmWL4Ww9AtCQtnkLGRZXnuRLVeS0-x_Hy27ZNseCgKB9JunefOUZW8wnGMoi4tpVOEcBGBSUQzsWbbAUOGc0wqeZwsAUuaCEnqSnYawAYCKCXiZnWDBKsw5XWTTajtG76auH9EwRxV7NyIVgtO9iqZBv_vYIevGNfp5i8J2bLwbDIqdd_O6Q0rH_n5f49p0atB4fbPKV8trdokGpRPsrNGzVR5pN0zWPLzKXrTKBvP6sJ9ld1-_3C6_51c3334sL69yzRiJuSIlwW3qsWJpMV0C5W3RlKA4LwkvGOba4KpuBYGa4lrUwISqm1YZA1zo4iz7vNed5nowjTbJprJy8v2g_FY61cu_b8a-k2t3LwmlBJMyCXw8CHj3azYhyqEP2lirRuPmIAkIhtMUE_jhH3DjZj8mc4nBRIiC7aCLPZRmEoI37VMnGOQuSrmLUh6jTBXv_jRw5A_ZJeD9AdhVHuWYJKWsCraT-PR_QraztdE8xIS-3aObEJ1_YgmjnFRlcXysVU6qte-DvFsle0X6U5jikhaPfn3GqQ</recordid><startdate>20080708</startdate><enddate>20080708</enddate><creator>Ueda, Kazuo</creator><creator>Valdivia, Carmen</creator><creator>Medeiros-Domingo, Argelia</creator><creator>Tester, David J</creator><creator>Vatta, Matteo</creator><creator>Farrugia, Gianrico</creator><creator>Ackerman, Michael J</creator><creator>Makielski, Jonathan C</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20080708</creationdate><title>Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex</title><author>Ueda, Kazuo ; Valdivia, Carmen ; Medeiros-Domingo, Argelia ; Tester, David J ; Vatta, Matteo ; Farrugia, Gianrico ; Ackerman, Michael J ; Makielski, Jonathan C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-a2721f166956955c7046f3d70a667263516ce19bf820b41b8b058abdfaee068c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Adult</topic><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Antibodies</topic><topic>Biological Sciences</topic><topic>Calcium-Binding Proteins - chemistry</topic><topic>Calcium-Binding Proteins - genetics</topic><topic>Cell Line</topic><topic>Cellular biology</topic><topic>DNA</topic><topic>Enzyme Activation</topic><topic>Female</topic><topic>Gene expression</topic><topic>Gene expression regulation</topic><topic>Genes</topic><topic>Genetic mutation</topic><topic>Genetic Predisposition to Disease</topic><topic>Genotype</topic><topic>Heart</topic><topic>Humans</topic><topic>Ion Channel Gating</topic><topic>Ion channels</topic><topic>Long QT syndrome</topic><topic>Long QT Syndrome - enzymology</topic><topic>Long QT Syndrome - genetics</topic><topic>Macromolecular Substances - metabolism</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Mice</topic><topic>Molecular Sequence Data</topic><topic>Muscle Proteins - chemistry</topic><topic>Muscle Proteins - genetics</topic><topic>Muscle Proteins - metabolism</topic><topic>Mutant Proteins - metabolism</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Myocytes, Cardiac - metabolism</topic><topic>Myocytes, Cardiac - pathology</topic><topic>NAV1.5 Voltage-Gated Sodium Channel</topic><topic>Nitric oxide</topic><topic>Nitric Oxide Synthase Type I - metabolism</topic><topic>Oxides</topic><topic>Plasma Membrane Calcium-Transporting ATPases - metabolism</topic><topic>Proteins</topic><topic>Sodium</topic><topic>Sodium channels</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ueda, Kazuo</creatorcontrib><creatorcontrib>Valdivia, Carmen</creatorcontrib><creatorcontrib>Medeiros-Domingo, Argelia</creatorcontrib><creatorcontrib>Tester, David J</creatorcontrib><creatorcontrib>Vatta, Matteo</creatorcontrib><creatorcontrib>Farrugia, Gianrico</creatorcontrib><creatorcontrib>Ackerman, Michael J</creatorcontrib><creatorcontrib>Makielski, Jonathan C</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ueda, Kazuo</au><au>Valdivia, Carmen</au><au>Medeiros-Domingo, Argelia</au><au>Tester, David J</au><au>Vatta, Matteo</au><au>Farrugia, Gianrico</au><au>Ackerman, Michael J</au><au>Makielski, Jonathan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2008-07-08</date><risdate>2008</risdate><volume>105</volume><issue>27</issue><spage>9355</spage><epage>9360</epage><pages>9355-9360</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Mutations in 11 genes that encode ion channels or their associated proteins cause inherited long QT syndrome (LQTS) and account for [almost equal to]75-80% of cases (LQT1-11). Direct sequencing of SNTA1, the gene encoding α1-syntrophin, was performed in a cohort of LQTS patients that were negative for mutations in the 11 known LQTS-susceptibility genes. A missense mutation (A390V-SNTA1) was found in a patient with recurrent syncope and markedly prolonged QT interval (QTc, 530 ms). SNTA1 links neuronal nitric oxide synthase (nNOS) to the nNOS inhibitor plasma membrane Ca-ATPase subtype 4b (PMCA4b); SNTA1 also is known to associate with the cardiac sodium channel SCN5A. By using a GST-fusion protein of the C terminus of SCN5A, we showed that WT-SNTA1 interacted with SCN5A, nNOS, and PMCA4b. In contrast, A390V-SNTA1 selectively disrupted association of PMCA4b with this complex and increased direct nitrosylation of SCN5A. A390V-SNTA1 expressed with SCN5A, nNOS, and PMCA4b in heterologous cells increased peak and late sodium current compared with WT-SNTA1, and the increase was partially inhibited by NOS blockers. Expression of A390V-SNTA1 in cardiac myocytes also increased late sodium current. We conclude that the A390V mutation disrupted binding with PMCA4b, released inhibition of nNOS, caused S-nitrosylation of SCN5A, and was associated with increased late sodium current, which is the characteristic biophysical dysfunction for sodium-channel-mediated LQTS (LQT3). These results establish an SNTA1-based nNOS complex attached to SCN5A as a key regulator of sodium current and suggest that SNTA1 be considered a rare LQTS-susceptibility gene.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>18591664</pmid><doi>10.1073/pnas.0801294105</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2008-07, Vol.105 (27), p.9355-9360 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_201288356 |
source | MEDLINE; JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Adult Amino Acid Sequence Amino Acid Substitution Animals Antibodies Biological Sciences Calcium-Binding Proteins - chemistry Calcium-Binding Proteins - genetics Cell Line Cellular biology DNA Enzyme Activation Female Gene expression Gene expression regulation Genes Genetic mutation Genetic Predisposition to Disease Genotype Heart Humans Ion Channel Gating Ion channels Long QT syndrome Long QT Syndrome - enzymology Long QT Syndrome - genetics Macromolecular Substances - metabolism Membrane Proteins - chemistry Membrane Proteins - genetics Mice Molecular Sequence Data Muscle Proteins - chemistry Muscle Proteins - genetics Muscle Proteins - metabolism Mutant Proteins - metabolism Mutation Mutation - genetics Myocytes, Cardiac - metabolism Myocytes, Cardiac - pathology NAV1.5 Voltage-Gated Sodium Channel Nitric oxide Nitric Oxide Synthase Type I - metabolism Oxides Plasma Membrane Calcium-Transporting ATPases - metabolism Proteins Sodium Sodium channels Sodium Channels - chemistry Sodium Channels - metabolism |
title | Syntrophin mutation associated with long QT syndrome through activation of the nNOS-SCN5A macromolecular complex |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T17%3A51%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Syntrophin%20mutation%20associated%20with%20long%20QT%20syndrome%20through%20activation%20of%20the%20nNOS-SCN5A%20macromolecular%20complex&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Ueda,%20Kazuo&rft.date=2008-07-08&rft.volume=105&rft.issue=27&rft.spage=9355&rft.epage=9360&rft.pages=9355-9360&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0801294105&rft_dat=%3Cjstor_proqu%3E25462973%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201288356&rft_id=info:pmid/18591664&rft_jstor_id=25462973&rfr_iscdi=true |