Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation

In this study we discuss hydrodeoxygenation (HDO) of pinyon juniper (PJ) catalytic pyrolysis oil over Ni/SiO2Al2O3 catalyst in a batch reactor to improve the physicochemical properties of the oil. The influence of temperature (350–500 °C), reaction time (15–90 min), and initial hydrogen pressure (3....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Energy (Oxford) 2017-12, Vol.141, p.2186-2195
Hauptverfasser: Jahromi, Hossein, Agblevor, Foster A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2195
container_issue
container_start_page 2186
container_title Energy (Oxford)
container_volume 141
creator Jahromi, Hossein
Agblevor, Foster A.
description In this study we discuss hydrodeoxygenation (HDO) of pinyon juniper (PJ) catalytic pyrolysis oil over Ni/SiO2Al2O3 catalyst in a batch reactor to improve the physicochemical properties of the oil. The influence of temperature (350–500 °C), reaction time (15–90 min), and initial hydrogen pressure (3.5–10 MPa), on hydrodeoxygenation of PJ pyrolysis oil was investigated. After hydrogenation was completed, gas, coke, and a liquid product of two immiscible phases (aqueous and organic), were obtained. Maximum HDO of bio-oil was achieved at 450° C while the initial hydrogen pressure was 7 MPa and the reaction time was 30 min. Under these conditions, the H/C and O/C atomic ratios changed from 1.29 to 0.29 respectively for bio-oil to 2.36 and 0 for HDO oil respectively. The higher heating value increased from 27.64 MJ/kg of bio-oil to 45.58 MJ/kg of upgraded oil. The water content of organic liquid product was less than 0.05 wt% while it was 1.63 wt% in the feed. The viscosity of upgraded oil was 1.26 cP compared to119 cP for the crude bio-oil. •Pinyon Juniper (PJ) can be used as a source of producing liquid hydrocarbons.•Temperature, hydrogen pressure, and reaction time have significant effect on HDO oil properties.•HDO oil obtained at 400 °C had a very similar 13C NMR spectra to that of commercial gasoline.
doi_str_mv 10.1016/j.energy.2017.11.149
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012839244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0360544217320078</els_id><sourcerecordid>2012839244</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-5ed5dce54b766383ed7b9ac48c07e11cc17897b65a726c99c29b4c752ef86d733</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD7-gYuC69akSZpmI8jgkwE3zjqkyW1NqUlNOoP993YY167u5nzncj6EbgguCCbVXV-Ah9jNRYmJKAgpCJMnaEVqQfNK1PwUrTCtcM4ZK8_RRUo9xpjXUq7Q23bsorbOd1los9H5Ofi833k3QsyMnvQwT85k4xzDMCeXsuCGbO909jnbGCyEn7kDrycX_BU6a_WQ4PrvXqLt0-PH-iXfvD-_rh82uaGCTDkHy60BzhpRVbSmYEUjtWG1wQIIMYaIWoqm4lqUlZHSlLJhRvAS2rqygtJLdHvsHWP43kGaVB920S8v1bK_rKksGVtS7JgyMaQUoVVjdF86zopgdbCmenW0dqCEIkQt1hbs_ojBsmDvIKpkHHgD1kUwk7LB_V_wC4pZeQg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012839244</pqid></control><display><type>article</type><title>Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jahromi, Hossein ; Agblevor, Foster A.</creator><creatorcontrib>Jahromi, Hossein ; Agblevor, Foster A.</creatorcontrib><description>In this study we discuss hydrodeoxygenation (HDO) of pinyon juniper (PJ) catalytic pyrolysis oil over Ni/SiO2Al2O3 catalyst in a batch reactor to improve the physicochemical properties of the oil. The influence of temperature (350–500 °C), reaction time (15–90 min), and initial hydrogen pressure (3.5–10 MPa), on hydrodeoxygenation of PJ pyrolysis oil was investigated. After hydrogenation was completed, gas, coke, and a liquid product of two immiscible phases (aqueous and organic), were obtained. Maximum HDO of bio-oil was achieved at 450° C while the initial hydrogen pressure was 7 MPa and the reaction time was 30 min. Under these conditions, the H/C and O/C atomic ratios changed from 1.29 to 0.29 respectively for bio-oil to 2.36 and 0 for HDO oil respectively. The higher heating value increased from 27.64 MJ/kg of bio-oil to 45.58 MJ/kg of upgraded oil. The water content of organic liquid product was less than 0.05 wt% while it was 1.63 wt% in the feed. The viscosity of upgraded oil was 1.26 cP compared to119 cP for the crude bio-oil. •Pinyon Juniper (PJ) can be used as a source of producing liquid hydrocarbons.•Temperature, hydrogen pressure, and reaction time have significant effect on HDO oil properties.•HDO oil obtained at 400 °C had a very similar 13C NMR spectra to that of commercial gasoline.</description><identifier>ISSN: 0360-5442</identifier><identifier>EISSN: 1873-6785</identifier><identifier>DOI: 10.1016/j.energy.2017.11.149</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aluminum oxide ; Batch reactors ; Calorific value ; Catalysis ; Coke oven gas ; Crude oil ; Heating ; Hydrogen storage ; Hydrogenation ; Moisture content ; Natural gas ; Organic liquids ; Physicochemical properties ; Pressure ; Pyrolysis ; Reaction time ; Silicon dioxide ; Viscosity ; Water content</subject><ispartof>Energy (Oxford), 2017-12, Vol.141, p.2186-2195</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 15, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-5ed5dce54b766383ed7b9ac48c07e11cc17897b65a726c99c29b4c752ef86d733</citedby><cites>FETCH-LOGICAL-c371t-5ed5dce54b766383ed7b9ac48c07e11cc17897b65a726c99c29b4c752ef86d733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.energy.2017.11.149$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Jahromi, Hossein</creatorcontrib><creatorcontrib>Agblevor, Foster A.</creatorcontrib><title>Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation</title><title>Energy (Oxford)</title><description>In this study we discuss hydrodeoxygenation (HDO) of pinyon juniper (PJ) catalytic pyrolysis oil over Ni/SiO2Al2O3 catalyst in a batch reactor to improve the physicochemical properties of the oil. The influence of temperature (350–500 °C), reaction time (15–90 min), and initial hydrogen pressure (3.5–10 MPa), on hydrodeoxygenation of PJ pyrolysis oil was investigated. After hydrogenation was completed, gas, coke, and a liquid product of two immiscible phases (aqueous and organic), were obtained. Maximum HDO of bio-oil was achieved at 450° C while the initial hydrogen pressure was 7 MPa and the reaction time was 30 min. Under these conditions, the H/C and O/C atomic ratios changed from 1.29 to 0.29 respectively for bio-oil to 2.36 and 0 for HDO oil respectively. The higher heating value increased from 27.64 MJ/kg of bio-oil to 45.58 MJ/kg of upgraded oil. The water content of organic liquid product was less than 0.05 wt% while it was 1.63 wt% in the feed. The viscosity of upgraded oil was 1.26 cP compared to119 cP for the crude bio-oil. •Pinyon Juniper (PJ) can be used as a source of producing liquid hydrocarbons.•Temperature, hydrogen pressure, and reaction time have significant effect on HDO oil properties.•HDO oil obtained at 400 °C had a very similar 13C NMR spectra to that of commercial gasoline.</description><subject>Aluminum oxide</subject><subject>Batch reactors</subject><subject>Calorific value</subject><subject>Catalysis</subject><subject>Coke oven gas</subject><subject>Crude oil</subject><subject>Heating</subject><subject>Hydrogen storage</subject><subject>Hydrogenation</subject><subject>Moisture content</subject><subject>Natural gas</subject><subject>Organic liquids</subject><subject>Physicochemical properties</subject><subject>Pressure</subject><subject>Pyrolysis</subject><subject>Reaction time</subject><subject>Silicon dioxide</subject><subject>Viscosity</subject><subject>Water content</subject><issn>0360-5442</issn><issn>1873-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD7-gYuC69akSZpmI8jgkwE3zjqkyW1NqUlNOoP993YY167u5nzncj6EbgguCCbVXV-Ah9jNRYmJKAgpCJMnaEVqQfNK1PwUrTCtcM4ZK8_RRUo9xpjXUq7Q23bsorbOd1los9H5Ofi833k3QsyMnvQwT85k4xzDMCeXsuCGbO909jnbGCyEn7kDrycX_BU6a_WQ4PrvXqLt0-PH-iXfvD-_rh82uaGCTDkHy60BzhpRVbSmYEUjtWG1wQIIMYaIWoqm4lqUlZHSlLJhRvAS2rqygtJLdHvsHWP43kGaVB920S8v1bK_rKksGVtS7JgyMaQUoVVjdF86zopgdbCmenW0dqCEIkQt1hbs_ojBsmDvIKpkHHgD1kUwk7LB_V_wC4pZeQg</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Jahromi, Hossein</creator><creator>Agblevor, Foster A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20171215</creationdate><title>Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation</title><author>Jahromi, Hossein ; Agblevor, Foster A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-5ed5dce54b766383ed7b9ac48c07e11cc17897b65a726c99c29b4c752ef86d733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum oxide</topic><topic>Batch reactors</topic><topic>Calorific value</topic><topic>Catalysis</topic><topic>Coke oven gas</topic><topic>Crude oil</topic><topic>Heating</topic><topic>Hydrogen storage</topic><topic>Hydrogenation</topic><topic>Moisture content</topic><topic>Natural gas</topic><topic>Organic liquids</topic><topic>Physicochemical properties</topic><topic>Pressure</topic><topic>Pyrolysis</topic><topic>Reaction time</topic><topic>Silicon dioxide</topic><topic>Viscosity</topic><topic>Water content</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jahromi, Hossein</creatorcontrib><creatorcontrib>Agblevor, Foster A.</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Energy (Oxford)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jahromi, Hossein</au><au>Agblevor, Foster A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation</atitle><jtitle>Energy (Oxford)</jtitle><date>2017-12-15</date><risdate>2017</risdate><volume>141</volume><spage>2186</spage><epage>2195</epage><pages>2186-2195</pages><issn>0360-5442</issn><eissn>1873-6785</eissn><abstract>In this study we discuss hydrodeoxygenation (HDO) of pinyon juniper (PJ) catalytic pyrolysis oil over Ni/SiO2Al2O3 catalyst in a batch reactor to improve the physicochemical properties of the oil. The influence of temperature (350–500 °C), reaction time (15–90 min), and initial hydrogen pressure (3.5–10 MPa), on hydrodeoxygenation of PJ pyrolysis oil was investigated. After hydrogenation was completed, gas, coke, and a liquid product of two immiscible phases (aqueous and organic), were obtained. Maximum HDO of bio-oil was achieved at 450° C while the initial hydrogen pressure was 7 MPa and the reaction time was 30 min. Under these conditions, the H/C and O/C atomic ratios changed from 1.29 to 0.29 respectively for bio-oil to 2.36 and 0 for HDO oil respectively. The higher heating value increased from 27.64 MJ/kg of bio-oil to 45.58 MJ/kg of upgraded oil. The water content of organic liquid product was less than 0.05 wt% while it was 1.63 wt% in the feed. The viscosity of upgraded oil was 1.26 cP compared to119 cP for the crude bio-oil. •Pinyon Juniper (PJ) can be used as a source of producing liquid hydrocarbons.•Temperature, hydrogen pressure, and reaction time have significant effect on HDO oil properties.•HDO oil obtained at 400 °C had a very similar 13C NMR spectra to that of commercial gasoline.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.energy.2017.11.149</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0360-5442
ispartof Energy (Oxford), 2017-12, Vol.141, p.2186-2195
issn 0360-5442
1873-6785
language eng
recordid cdi_proquest_journals_2012839244
source Elsevier ScienceDirect Journals Complete
subjects Aluminum oxide
Batch reactors
Calorific value
Catalysis
Coke oven gas
Crude oil
Heating
Hydrogen storage
Hydrogenation
Moisture content
Natural gas
Organic liquids
Physicochemical properties
Pressure
Pyrolysis
Reaction time
Silicon dioxide
Viscosity
Water content
title Upgrading of pinyon-juniper catalytic pyrolysis oil via hydrodeoxygenation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T14%3A12%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upgrading%20of%20pinyon-juniper%20catalytic%20pyrolysis%20oil%20via%20hydrodeoxygenation&rft.jtitle=Energy%20(Oxford)&rft.au=Jahromi,%20Hossein&rft.date=2017-12-15&rft.volume=141&rft.spage=2186&rft.epage=2195&rft.pages=2186-2195&rft.issn=0360-5442&rft.eissn=1873-6785&rft_id=info:doi/10.1016/j.energy.2017.11.149&rft_dat=%3Cproquest_cross%3E2012839244%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012839244&rft_id=info:pmid/&rft_els_id=S0360544217320078&rfr_iscdi=true