Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production

Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO2are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2003-02, Vol.100 (3), p.825-832
Hauptverfasser: Causey, T. B., Zhou, S., Shanmugam, K. T., Ingram, L. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 3
container_start_page 825
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 100
creator Causey, T. B.
Zhou, S.
Shanmugam, K. T.
Ingram, L. O.
description Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO2are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate production by using an approach that combines attributes of fermentative and oxidative metabolism (rapid growth, external electron acceptor) into a single biocatalyst. The resulting strain (TC36) converted 333 mM glucose into 572 mM acetate, a product of equivalent oxidation state, in 18 h. With excess glucose, a maximum of 878 mM acetate was produced. Strain TC36 was constructed by sequentially assembling deletions that inactivated oxidative phosphorylation (Δ atpFH), disrupted the cyclic function of the tricarboxylic acid pathway (Δ sucA), and eliminated native fermentation pathways $(\Delta focA\!-\!pflB\>\Delta frdBC\> \Delta ldhA\>\Delta adhE)$. These mutations minimized the loss of substrate carbon and the oxygen requirement for redox balance. Although TC36 produces only four ATPs per glucose, this strain grows well in mineral salts medium and has no auxotrophic requirement. Glycolytic flux in TC36 $(0.3\>\mu mol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}\>protein)$ was twice that of the parent. Higher flux was attributed to a deletion of membrane-coupling subunits in (F1F 0)H+-ATP synthase that inactivated ATP synthesis while retaining cytoplasmic F1-ATPase activity. The effectiveness of this deletion in stimulating flux provides further evidence for the importance of ATP supply and demand in the regulation of central metabolism. Derivatives of TC36 may prove useful for the commercial production of a variety of commodity chemicals.
doi_str_mv 10.1073/pnas.0337684100
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_201276223</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3138245</jstor_id><sourcerecordid>3138245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-9d2c9b10c663c4da5726909084116eb54aee0134dbb96fd98de1041cc93660733</originalsourceid><addsrcrecordid>eNp9kUtv1DAUhSMEoqWwZgPIYsEu7fUjTlyJBRoNFKlQxEMsLcd2ZjzK2IOdVAN_gr-MwwydwoJVpHu_c3N8TlE8xnCKoaZnG6_SKVBa84ZhgDvFMQaBS84E3C2OAUhdNoywo-JBSisAEFUD94sjTKqKV5wdFz_nfuG8tdH5BRqWFr2zg2pD79IahQ7Nk17mnV46hXSeoq8UY0BdiL_hWfDXNiYX_AR_GhcqzwP6aE3Ylu_tOETVI-UNuto6435Ygz7EYEY9pHN0EdZB6fy3wf6Z5jsPi3ud6pN9tP-eFF9ezz_PLsrLqzdvZ68uS80aMZTCEC1aDJpzqplRVU24AAE5BcxtWzFlLWDKTNsK3hnRGIuBYa0F5TwHR0-Kl7u7m7FdW6Otn7zKTXRrFb_LoJz8e-PdUi7CtSSi4Q3P-hd7fQzfRpsGuXZJ275X3oYxyZrmtHPGGXz-D7gKY_T5bZIAJjUnZHJztoN0DClF290YwSCnouVUtDwUnRXPbvs_8PtmbxmclIdzIKlsSCW7se8Hux0y-PR_YN4_2e1XaQjxBqCYNoRV9BeuWcZp</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201276223</pqid></control><display><type>article</type><title>Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Causey, T. B. ; Zhou, S. ; Shanmugam, K. T. ; Ingram, L. O.</creator><creatorcontrib>Causey, T. B. ; Zhou, S. ; Shanmugam, K. T. ; Ingram, L. O.</creatorcontrib><description>Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO2are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate production by using an approach that combines attributes of fermentative and oxidative metabolism (rapid growth, external electron acceptor) into a single biocatalyst. The resulting strain (TC36) converted 333 mM glucose into 572 mM acetate, a product of equivalent oxidation state, in 18 h. With excess glucose, a maximum of 878 mM acetate was produced. Strain TC36 was constructed by sequentially assembling deletions that inactivated oxidative phosphorylation (Δ atpFH), disrupted the cyclic function of the tricarboxylic acid pathway (Δ sucA), and eliminated native fermentation pathways $(\Delta focA\!-\!pflB\&gt;\Delta frdBC\&gt; \Delta ldhA\&gt;\Delta adhE)$. These mutations minimized the loss of substrate carbon and the oxygen requirement for redox balance. Although TC36 produces only four ATPs per glucose, this strain grows well in mineral salts medium and has no auxotrophic requirement. Glycolytic flux in TC36 $(0.3\&gt;\mu mol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}\&gt;protein)$ was twice that of the parent. Higher flux was attributed to a deletion of membrane-coupling subunits in (F1F 0)H+-ATP synthase that inactivated ATP synthesis while retaining cytoplasmic F1-ATPase activity. The effectiveness of this deletion in stimulating flux provides further evidence for the importance of ATP supply and demand in the regulation of central metabolism. Derivatives of TC36 may prove useful for the commercial production of a variety of commodity chemicals.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0337684100</identifier><identifier>PMID: 12556564</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Acetates ; Acetates - metabolism ; Acetic Acid - metabolism ; Alcohol Dehydrogenase - metabolism ; Biological Sciences ; Carbohydrate Metabolism ; Disease ; Electrons ; Energy metabolism ; Escherichia coli - metabolism ; Ethanol ; Fermentation ; Genetic engineering ; Genetic mutation ; Glucose - metabolism ; Metabolism ; Minerals ; Models, Biological ; Models, Chemical ; Mutation ; Oxidation ; Oxidation-Reduction ; Oxidative phosphorylation ; Oxygen - metabolism ; Phosphorylation ; Plasmids ; Proton-Translocating ATPases - metabolism ; Succinic Acid - metabolism ; Time Factors ; Tricarboxylic Acids - metabolism</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-02, Vol.100 (3), p.825-832</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 4, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-9d2c9b10c663c4da5726909084116eb54aee0134dbb96fd98de1041cc93660733</citedby><cites>FETCH-LOGICAL-c489t-9d2c9b10c663c4da5726909084116eb54aee0134dbb96fd98de1041cc93660733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/3.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3138245$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3138245$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12556564$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Causey, T. B.</creatorcontrib><creatorcontrib>Zhou, S.</creatorcontrib><creatorcontrib>Shanmugam, K. T.</creatorcontrib><creatorcontrib>Ingram, L. O.</creatorcontrib><title>Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO2are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate production by using an approach that combines attributes of fermentative and oxidative metabolism (rapid growth, external electron acceptor) into a single biocatalyst. The resulting strain (TC36) converted 333 mM glucose into 572 mM acetate, a product of equivalent oxidation state, in 18 h. With excess glucose, a maximum of 878 mM acetate was produced. Strain TC36 was constructed by sequentially assembling deletions that inactivated oxidative phosphorylation (Δ atpFH), disrupted the cyclic function of the tricarboxylic acid pathway (Δ sucA), and eliminated native fermentation pathways $(\Delta focA\!-\!pflB\&gt;\Delta frdBC\&gt; \Delta ldhA\&gt;\Delta adhE)$. These mutations minimized the loss of substrate carbon and the oxygen requirement for redox balance. Although TC36 produces only four ATPs per glucose, this strain grows well in mineral salts medium and has no auxotrophic requirement. Glycolytic flux in TC36 $(0.3\&gt;\mu mol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}\&gt;protein)$ was twice that of the parent. Higher flux was attributed to a deletion of membrane-coupling subunits in (F1F 0)H+-ATP synthase that inactivated ATP synthesis while retaining cytoplasmic F1-ATPase activity. The effectiveness of this deletion in stimulating flux provides further evidence for the importance of ATP supply and demand in the regulation of central metabolism. Derivatives of TC36 may prove useful for the commercial production of a variety of commodity chemicals.</description><subject>Acetates</subject><subject>Acetates - metabolism</subject><subject>Acetic Acid - metabolism</subject><subject>Alcohol Dehydrogenase - metabolism</subject><subject>Biological Sciences</subject><subject>Carbohydrate Metabolism</subject><subject>Disease</subject><subject>Electrons</subject><subject>Energy metabolism</subject><subject>Escherichia coli - metabolism</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Genetic engineering</subject><subject>Genetic mutation</subject><subject>Glucose - metabolism</subject><subject>Metabolism</subject><subject>Minerals</subject><subject>Models, Biological</subject><subject>Models, Chemical</subject><subject>Mutation</subject><subject>Oxidation</subject><subject>Oxidation-Reduction</subject><subject>Oxidative phosphorylation</subject><subject>Oxygen - metabolism</subject><subject>Phosphorylation</subject><subject>Plasmids</subject><subject>Proton-Translocating ATPases - metabolism</subject><subject>Succinic Acid - metabolism</subject><subject>Time Factors</subject><subject>Tricarboxylic Acids - metabolism</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUtv1DAUhSMEoqWwZgPIYsEu7fUjTlyJBRoNFKlQxEMsLcd2ZjzK2IOdVAN_gr-MwwydwoJVpHu_c3N8TlE8xnCKoaZnG6_SKVBa84ZhgDvFMQaBS84E3C2OAUhdNoywo-JBSisAEFUD94sjTKqKV5wdFz_nfuG8tdH5BRqWFr2zg2pD79IahQ7Nk17mnV46hXSeoq8UY0BdiL_hWfDXNiYX_AR_GhcqzwP6aE3Ylu_tOETVI-UNuto6435Ygz7EYEY9pHN0EdZB6fy3wf6Z5jsPi3ud6pN9tP-eFF9ezz_PLsrLqzdvZ68uS80aMZTCEC1aDJpzqplRVU24AAE5BcxtWzFlLWDKTNsK3hnRGIuBYa0F5TwHR0-Kl7u7m7FdW6Otn7zKTXRrFb_LoJz8e-PdUi7CtSSi4Q3P-hd7fQzfRpsGuXZJ275X3oYxyZrmtHPGGXz-D7gKY_T5bZIAJjUnZHJztoN0DClF290YwSCnouVUtDwUnRXPbvs_8PtmbxmclIdzIKlsSCW7se8Hux0y-PR_YN4_2e1XaQjxBqCYNoRV9BeuWcZp</recordid><startdate>20030204</startdate><enddate>20030204</enddate><creator>Causey, T. B.</creator><creator>Zhou, S.</creator><creator>Shanmugam, K. T.</creator><creator>Ingram, L. O.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><general>The National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030204</creationdate><title>Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production</title><author>Causey, T. B. ; Zhou, S. ; Shanmugam, K. T. ; Ingram, L. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-9d2c9b10c663c4da5726909084116eb54aee0134dbb96fd98de1041cc93660733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Acetates</topic><topic>Acetates - metabolism</topic><topic>Acetic Acid - metabolism</topic><topic>Alcohol Dehydrogenase - metabolism</topic><topic>Biological Sciences</topic><topic>Carbohydrate Metabolism</topic><topic>Disease</topic><topic>Electrons</topic><topic>Energy metabolism</topic><topic>Escherichia coli - metabolism</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Genetic engineering</topic><topic>Genetic mutation</topic><topic>Glucose - metabolism</topic><topic>Metabolism</topic><topic>Minerals</topic><topic>Models, Biological</topic><topic>Models, Chemical</topic><topic>Mutation</topic><topic>Oxidation</topic><topic>Oxidation-Reduction</topic><topic>Oxidative phosphorylation</topic><topic>Oxygen - metabolism</topic><topic>Phosphorylation</topic><topic>Plasmids</topic><topic>Proton-Translocating ATPases - metabolism</topic><topic>Succinic Acid - metabolism</topic><topic>Time Factors</topic><topic>Tricarboxylic Acids - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Causey, T. B.</creatorcontrib><creatorcontrib>Zhou, S.</creatorcontrib><creatorcontrib>Shanmugam, K. T.</creatorcontrib><creatorcontrib>Ingram, L. O.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Causey, T. B.</au><au>Zhou, S.</au><au>Shanmugam, K. T.</au><au>Ingram, L. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-02-04</date><risdate>2003</risdate><volume>100</volume><issue>3</issue><spage>825</spage><epage>832</epage><pages>825-832</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Microbial processes for commodity chemicals have focused on reduced products and anaerobic conditions where substrate loss to cell mass and CO2are minimal and product yields are high. To facilitate expansion into more oxidized chemicals, Escherichia coli W3110 was genetically engineered for acetate production by using an approach that combines attributes of fermentative and oxidative metabolism (rapid growth, external electron acceptor) into a single biocatalyst. The resulting strain (TC36) converted 333 mM glucose into 572 mM acetate, a product of equivalent oxidation state, in 18 h. With excess glucose, a maximum of 878 mM acetate was produced. Strain TC36 was constructed by sequentially assembling deletions that inactivated oxidative phosphorylation (Δ atpFH), disrupted the cyclic function of the tricarboxylic acid pathway (Δ sucA), and eliminated native fermentation pathways $(\Delta focA\!-\!pflB\&gt;\Delta frdBC\&gt; \Delta ldhA\&gt;\Delta adhE)$. These mutations minimized the loss of substrate carbon and the oxygen requirement for redox balance. Although TC36 produces only four ATPs per glucose, this strain grows well in mineral salts medium and has no auxotrophic requirement. Glycolytic flux in TC36 $(0.3\&gt;\mu mol\!\cdot\!min^{-1}\!\cdot\!mg^{-1}\&gt;protein)$ was twice that of the parent. Higher flux was attributed to a deletion of membrane-coupling subunits in (F1F 0)H+-ATP synthase that inactivated ATP synthesis while retaining cytoplasmic F1-ATPase activity. The effectiveness of this deletion in stimulating flux provides further evidence for the importance of ATP supply and demand in the regulation of central metabolism. Derivatives of TC36 may prove useful for the commercial production of a variety of commodity chemicals.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>12556564</pmid><doi>10.1073/pnas.0337684100</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2003-02, Vol.100 (3), p.825-832
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_201276223
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Acetates
Acetates - metabolism
Acetic Acid - metabolism
Alcohol Dehydrogenase - metabolism
Biological Sciences
Carbohydrate Metabolism
Disease
Electrons
Energy metabolism
Escherichia coli - metabolism
Ethanol
Fermentation
Genetic engineering
Genetic mutation
Glucose - metabolism
Metabolism
Minerals
Models, Biological
Models, Chemical
Mutation
Oxidation
Oxidation-Reduction
Oxidative phosphorylation
Oxygen - metabolism
Phosphorylation
Plasmids
Proton-Translocating ATPases - metabolism
Succinic Acid - metabolism
Time Factors
Tricarboxylic Acids - metabolism
title Engineering the Metabolism of Escherichia coli W3110 for the Conversion of Sugar to Redox-Neutral and Oxidized Products: Homoacetate Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T21%3A28%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20the%20Metabolism%20of%20Escherichia%20coli%20W3110%20for%20the%20Conversion%20of%20Sugar%20to%20Redox-Neutral%20and%20Oxidized%20Products:%20Homoacetate%20Production&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Causey,%20T.%20B.&rft.date=2003-02-04&rft.volume=100&rft.issue=3&rft.spage=825&rft.epage=832&rft.pages=825-832&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0337684100&rft_dat=%3Cjstor_proqu%3E3138245%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201276223&rft_id=info:pmid/12556564&rft_jstor_id=3138245&rfr_iscdi=true