Unconditional Convergence of Fourier Series for Functions of Bounded Variation

This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2018, Vol.59 (1), p.65-72
Hauptverfasser: Gogoladze, L. D., Tsagareishvili, V. Sh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 72
container_issue 1
container_start_page 65
container_title Siberian mathematical journal
container_volume 59
creator Gogoladze, L. D.
Tsagareishvili, V. Sh
description This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.
doi_str_mv 10.1134/S0037446618010081
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012628219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012628219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82om2c2foxarQtFDrdclTSdlS01q0hX89m6o4EFkDg_m_d4wM4RcArsGEPXNnDGh6lpK0AwY03BERtAoURku2TEZFbsq_ik5y3nDCiTNiDwvgoth1e27GOyWTmL4xLTG4JBGT6exTx0mOsdBMvUx0WkfXIFz8e9iH1a4om82dbZ0z8mJt9uMFz86Jovp_evksZq9PDxNbmeVEyD3lUImSqExsgbgKIRW2rlGW7bkFhsOGn3tlWBKLa1ZGrS6MbphliuvlBiTq8PcXYofPeZ9uxlWHS7ILWfAJdcczEDBgXIp5pzQt7vUvdv01QJry9vaP28bMvyQyQMb1ph-J_8f-gbuhW1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012628219</pqid></control><display><type>article</type><title>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gogoladze, L. D. ; Tsagareishvili, V. Sh</creator><creatorcontrib>Gogoladze, L. D. ; Tsagareishvili, V. Sh</creatorcontrib><description>This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446618010081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Convergence ; Fourier series ; Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian mathematical journal, 2018, Vol.59 (1), p.65-72</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</citedby><cites>FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446618010081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446618010081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Tsagareishvili, V. Sh</creatorcontrib><title>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.</description><subject>Convergence</subject><subject>Fourier series</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82om2c2foxarQtFDrdclTSdlS01q0hX89m6o4EFkDg_m_d4wM4RcArsGEPXNnDGh6lpK0AwY03BERtAoURku2TEZFbsq_ik5y3nDCiTNiDwvgoth1e27GOyWTmL4xLTG4JBGT6exTx0mOsdBMvUx0WkfXIFz8e9iH1a4om82dbZ0z8mJt9uMFz86Jovp_evksZq9PDxNbmeVEyD3lUImSqExsgbgKIRW2rlGW7bkFhsOGn3tlWBKLa1ZGrS6MbphliuvlBiTq8PcXYofPeZ9uxlWHS7ILWfAJdcczEDBgXIp5pzQt7vUvdv01QJry9vaP28bMvyQyQMb1ph-J_8f-gbuhW1O</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Gogoladze, L. D.</creator><creator>Tsagareishvili, V. Sh</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</title><author>Gogoladze, L. D. ; Tsagareishvili, V. Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convergence</topic><topic>Fourier series</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Tsagareishvili, V. Sh</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoladze, L. D.</au><au>Tsagareishvili, V. Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2018</date><risdate>2018</risdate><volume>59</volume><issue>1</issue><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446618010081</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2018, Vol.59 (1), p.65-72
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2012628219
source SpringerLink Journals - AutoHoldings
subjects Convergence
Fourier series
Mathematics
Mathematics and Statistics
title Unconditional Convergence of Fourier Series for Functions of Bounded Variation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconditional%20Convergence%20of%20Fourier%20Series%20for%20Functions%20of%20Bounded%20Variation&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Gogoladze,%20L.%20D.&rft.date=2018&rft.volume=59&rft.issue=1&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446618010081&rft_dat=%3Cproquest_cross%3E2012628219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012628219&rft_id=info:pmid/&rfr_iscdi=true