Unconditional Convergence of Fourier Series for Functions of Bounded Variation
This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e....
Gespeichert in:
Veröffentlicht in: | Siberian mathematical journal 2018, Vol.59 (1), p.65-72 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 72 |
---|---|
container_issue | 1 |
container_start_page | 65 |
container_title | Siberian mathematical journal |
container_volume | 59 |
creator | Gogoladze, L. D. Tsagareishvili, V. Sh |
description | This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible. |
doi_str_mv | 10.1134/S0037446618010081 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012628219</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012628219</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA82om2c2foxarQtFDrdclTSdlS01q0hX89m6o4EFkDg_m_d4wM4RcArsGEPXNnDGh6lpK0AwY03BERtAoURku2TEZFbsq_ik5y3nDCiTNiDwvgoth1e27GOyWTmL4xLTG4JBGT6exTx0mOsdBMvUx0WkfXIFz8e9iH1a4om82dbZ0z8mJt9uMFz86Jovp_evksZq9PDxNbmeVEyD3lUImSqExsgbgKIRW2rlGW7bkFhsOGn3tlWBKLa1ZGrS6MbphliuvlBiTq8PcXYofPeZ9uxlWHS7ILWfAJdcczEDBgXIp5pzQt7vUvdv01QJry9vaP28bMvyQyQMb1ph-J_8f-gbuhW1O</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012628219</pqid></control><display><type>article</type><title>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gogoladze, L. D. ; Tsagareishvili, V. Sh</creator><creatorcontrib>Gogoladze, L. D. ; Tsagareishvili, V. Sh</creatorcontrib><description>This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446618010081</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Convergence ; Fourier series ; Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian mathematical journal, 2018, Vol.59 (1), p.65-72</ispartof><rights>Pleiades Publishing, Ltd. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</citedby><cites>FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446618010081$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446618010081$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Tsagareishvili, V. Sh</creatorcontrib><title>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.</description><subject>Convergence</subject><subject>Fourier series</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA82om2c2foxarQtFDrdclTSdlS01q0hX89m6o4EFkDg_m_d4wM4RcArsGEPXNnDGh6lpK0AwY03BERtAoURku2TEZFbsq_ik5y3nDCiTNiDwvgoth1e27GOyWTmL4xLTG4JBGT6exTx0mOsdBMvUx0WkfXIFz8e9iH1a4om82dbZ0z8mJt9uMFz86Jovp_evksZq9PDxNbmeVEyD3lUImSqExsgbgKIRW2rlGW7bkFhsOGn3tlWBKLa1ZGrS6MbphliuvlBiTq8PcXYofPeZ9uxlWHS7ILWfAJdcczEDBgXIp5pzQt7vUvdv01QJry9vaP28bMvyQyQMb1ph-J_8f-gbuhW1O</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Gogoladze, L. D.</creator><creator>Tsagareishvili, V. Sh</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</title><author>Gogoladze, L. D. ; Tsagareishvili, V. Sh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7e030303e9964112e33878cc58a0b2ae5218ef4f73077ba9b9ea859850a27f773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Convergence</topic><topic>Fourier series</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gogoladze, L. D.</creatorcontrib><creatorcontrib>Tsagareishvili, V. Sh</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gogoladze, L. D.</au><au>Tsagareishvili, V. Sh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unconditional Convergence of Fourier Series for Functions of Bounded Variation</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2018</date><risdate>2018</risdate><volume>59</volume><issue>1</issue><spage>65</spage><epage>72</epage><pages>65-72</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>This article concerns the unconditional convergence a.e. of Fourier series with respect to general orthonormal systems. We find certain conditions to be satisfied by the functions in the orthonormal system so that the Fourier series of each function of finite variation unconditionally converge a.e. The results are best possible.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446618010081</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0037-4466 |
ispartof | Siberian mathematical journal, 2018, Vol.59 (1), p.65-72 |
issn | 0037-4466 1573-9260 |
language | eng |
recordid | cdi_proquest_journals_2012628219 |
source | SpringerLink Journals - AutoHoldings |
subjects | Convergence Fourier series Mathematics Mathematics and Statistics |
title | Unconditional Convergence of Fourier Series for Functions of Bounded Variation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A23%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unconditional%20Convergence%20of%20Fourier%20Series%20for%20Functions%20of%20Bounded%20Variation&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Gogoladze,%20L.%20D.&rft.date=2018&rft.volume=59&rft.issue=1&rft.spage=65&rft.epage=72&rft.pages=65-72&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446618010081&rft_dat=%3Cproquest_cross%3E2012628219%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012628219&rft_id=info:pmid/&rfr_iscdi=true |