Miyamoto involutions in axial algebras of Jordan type half

Nonassociative commutative algebras A , generated by idempotents e whose adjoint operators ad e : A → A , given by x ↦ xe , are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2018-02, Vol.223 (1), p.261-308
Hauptverfasser: Hall, Jonathan I., Segev, Yoav, Shpectorov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 308
container_issue 1
container_start_page 261
container_title Israel journal of mathematics
container_volume 223
creator Hall, Jonathan I.
Segev, Yoav
Shpectorov, Sergey
description Nonassociative commutative algebras A , generated by idempotents e whose adjoint operators ad e : A → A , given by x ↦ xe , are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms. Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing ( x -1) x ( x - η ), where η ∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where η = 1/2, which is less understood and is of a different nature.
doi_str_mv 10.1007/s11856-017-1615-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012623674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012623674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqHwAWyWmA1-z7GdsKEKCqiIBWbLTeySKo2LnSL69yQKEhPTfcM990mHkEvg18C5vkkAhVSMg2agQDJ9RDKQSrJCAhyTjHMEhqDxlJyltOFcCg0iI7cvzcFuQx9o032Fdt83oUvDTe13Y1tq27VbRZto8PQ5xNp2tD_sHP2wrT8nJ962yV385oy8P9y_zR_Z8nXxNL9bskrIsmey8LrOlaqUsIKXKKSseJ7XORbeSlR6BRwrpbWoXTmGrBGdVojKq6IoxYxcTbu7GD73LvVmE_axG14a5IAKhdL50IKpVcWQUnTe7GKztfFggJtRkZkUmUGRGRUZPTA4MWnodmsX_5b_h34AlthmfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012623674</pqid></control><display><type>article</type><title>Miyamoto involutions in axial algebras of Jordan type half</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hall, Jonathan I. ; Segev, Yoav ; Shpectorov, Sergey</creator><creatorcontrib>Hall, Jonathan I. ; Segev, Yoav ; Shpectorov, Sergey</creatorcontrib><description>Nonassociative commutative algebras A , generated by idempotents e whose adjoint operators ad e : A → A , given by x ↦ xe , are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms. Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing ( x -1) x ( x - η ), where η ∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where η = 1/2, which is less understood and is of a different nature.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1615-7</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Automorphisms ; Eigenvalues ; Group theory ; Group Theory and Generalizations ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Theoretical</subject><ispartof>Israel journal of mathematics, 2018-02, Vol.223 (1), p.261-308</ispartof><rights>Hebrew University of Jerusalem 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</citedby><cites>FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-017-1615-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-017-1615-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hall, Jonathan I.</creatorcontrib><creatorcontrib>Segev, Yoav</creatorcontrib><creatorcontrib>Shpectorov, Sergey</creatorcontrib><title>Miyamoto involutions in axial algebras of Jordan type half</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Nonassociative commutative algebras A , generated by idempotents e whose adjoint operators ad e : A → A , given by x ↦ xe , are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms. Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing ( x -1) x ( x - η ), where η ∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where η = 1/2, which is less understood and is of a different nature.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Automorphisms</subject><subject>Eigenvalues</subject><subject>Group theory</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqHwAWyWmA1-z7GdsKEKCqiIBWbLTeySKo2LnSL69yQKEhPTfcM990mHkEvg18C5vkkAhVSMg2agQDJ9RDKQSrJCAhyTjHMEhqDxlJyltOFcCg0iI7cvzcFuQx9o032Fdt83oUvDTe13Y1tq27VbRZto8PQ5xNp2tD_sHP2wrT8nJ962yV385oy8P9y_zR_Z8nXxNL9bskrIsmey8LrOlaqUsIKXKKSseJ7XORbeSlR6BRwrpbWoXTmGrBGdVojKq6IoxYxcTbu7GD73LvVmE_axG14a5IAKhdL50IKpVcWQUnTe7GKztfFggJtRkZkUmUGRGRUZPTA4MWnodmsX_5b_h34AlthmfA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hall, Jonathan I.</creator><creator>Segev, Yoav</creator><creator>Shpectorov, Sergey</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Miyamoto involutions in axial algebras of Jordan type half</title><author>Hall, Jonathan I. ; Segev, Yoav ; Shpectorov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Automorphisms</topic><topic>Eigenvalues</topic><topic>Group theory</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Jonathan I.</creatorcontrib><creatorcontrib>Segev, Yoav</creatorcontrib><creatorcontrib>Shpectorov, Sergey</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Jonathan I.</au><au>Segev, Yoav</au><au>Shpectorov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miyamoto involutions in axial algebras of Jordan type half</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>223</volume><issue>1</issue><spage>261</spage><epage>308</epage><pages>261-308</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Nonassociative commutative algebras A , generated by idempotents e whose adjoint operators ad e : A → A , given by x ↦ xe , are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms. Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing ( x -1) x ( x - η ), where η ∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where η = 1/2, which is less understood and is of a different nature.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1615-7</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-2172
ispartof Israel journal of mathematics, 2018-02, Vol.223 (1), p.261-308
issn 0021-2172
1565-8511
language eng
recordid cdi_proquest_journals_2012623674
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Automorphisms
Eigenvalues
Group theory
Group Theory and Generalizations
Mathematical analysis
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators (mathematics)
Theoretical
title Miyamoto involutions in axial algebras of Jordan type half
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miyamoto%20involutions%20in%20axial%20algebras%20of%20Jordan%20type%20half&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Hall,%20Jonathan%20I.&rft.date=2018-02-01&rft.volume=223&rft.issue=1&rft.spage=261&rft.epage=308&rft.pages=261-308&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1615-7&rft_dat=%3Cproquest_cross%3E2012623674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012623674&rft_id=info:pmid/&rfr_iscdi=true