Miyamoto involutions in axial algebras of Jordan type half
Nonassociative commutative algebras A , generated by idempotents e whose adjoint operators ad e : A → A , given by x ↦ xe , are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of...
Gespeichert in:
Veröffentlicht in: | Israel journal of mathematics 2018-02, Vol.223 (1), p.261-308 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 308 |
---|---|
container_issue | 1 |
container_start_page | 261 |
container_title | Israel journal of mathematics |
container_volume | 223 |
creator | Hall, Jonathan I. Segev, Yoav Shpectorov, Sergey |
description | Nonassociative commutative algebras
A
, generated by idempotents
e
whose adjoint operators ad
e
:
A
→
A
, given by
x
↦
xe
, are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms.
Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing (
x
-1)
x
(
x
-
η
), where
η
∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where
η
= 1/2, which is less understood and is of a different nature. |
doi_str_mv | 10.1007/s11856-017-1615-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012623674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012623674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</originalsourceid><addsrcrecordid>eNp1kLFOwzAURS0EEqHwAWyWmA1-z7GdsKEKCqiIBWbLTeySKo2LnSL69yQKEhPTfcM990mHkEvg18C5vkkAhVSMg2agQDJ9RDKQSrJCAhyTjHMEhqDxlJyltOFcCg0iI7cvzcFuQx9o032Fdt83oUvDTe13Y1tq27VbRZto8PQ5xNp2tD_sHP2wrT8nJ962yV385oy8P9y_zR_Z8nXxNL9bskrIsmey8LrOlaqUsIKXKKSseJ7XORbeSlR6BRwrpbWoXTmGrBGdVojKq6IoxYxcTbu7GD73LvVmE_axG14a5IAKhdL50IKpVcWQUnTe7GKztfFggJtRkZkUmUGRGRUZPTA4MWnodmsX_5b_h34AlthmfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012623674</pqid></control><display><type>article</type><title>Miyamoto involutions in axial algebras of Jordan type half</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hall, Jonathan I. ; Segev, Yoav ; Shpectorov, Sergey</creator><creatorcontrib>Hall, Jonathan I. ; Segev, Yoav ; Shpectorov, Sergey</creatorcontrib><description>Nonassociative commutative algebras
A
, generated by idempotents
e
whose adjoint operators ad
e
:
A
→
A
, given by
x
↦
xe
, are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms.
Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing (
x
-1)
x
(
x
-
η
), where
η
∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where
η
= 1/2, which is less understood and is of a different nature.</description><identifier>ISSN: 0021-2172</identifier><identifier>EISSN: 1565-8511</identifier><identifier>DOI: 10.1007/s11856-017-1615-7</identifier><language>eng</language><publisher>Jerusalem: The Hebrew University Magnes Press</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Automorphisms ; Eigenvalues ; Group theory ; Group Theory and Generalizations ; Mathematical analysis ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators (mathematics) ; Theoretical</subject><ispartof>Israel journal of mathematics, 2018-02, Vol.223 (1), p.261-308</ispartof><rights>Hebrew University of Jerusalem 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</citedby><cites>FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11856-017-1615-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11856-017-1615-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hall, Jonathan I.</creatorcontrib><creatorcontrib>Segev, Yoav</creatorcontrib><creatorcontrib>Shpectorov, Sergey</creatorcontrib><title>Miyamoto involutions in axial algebras of Jordan type half</title><title>Israel journal of mathematics</title><addtitle>Isr. J. Math</addtitle><description>Nonassociative commutative algebras
A
, generated by idempotents
e
whose adjoint operators ad
e
:
A
→
A
, given by
x
↦
xe
, are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms.
Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing (
x
-1)
x
(
x
-
η
), where
η
∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where
η
= 1/2, which is less understood and is of a different nature.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Automorphisms</subject><subject>Eigenvalues</subject><subject>Group theory</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators (mathematics)</subject><subject>Theoretical</subject><issn>0021-2172</issn><issn>1565-8511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAURS0EEqHwAWyWmA1-z7GdsKEKCqiIBWbLTeySKo2LnSL69yQKEhPTfcM990mHkEvg18C5vkkAhVSMg2agQDJ9RDKQSrJCAhyTjHMEhqDxlJyltOFcCg0iI7cvzcFuQx9o032Fdt83oUvDTe13Y1tq27VbRZto8PQ5xNp2tD_sHP2wrT8nJ962yV385oy8P9y_zR_Z8nXxNL9bskrIsmey8LrOlaqUsIKXKKSseJ7XORbeSlR6BRwrpbWoXTmGrBGdVojKq6IoxYxcTbu7GD73LvVmE_axG14a5IAKhdL50IKpVcWQUnTe7GKztfFggJtRkZkUmUGRGRUZPTA4MWnodmsX_5b_h34AlthmfA</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Hall, Jonathan I.</creator><creator>Segev, Yoav</creator><creator>Shpectorov, Sergey</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180201</creationdate><title>Miyamoto involutions in axial algebras of Jordan type half</title><author>Hall, Jonathan I. ; Segev, Yoav ; Shpectorov, Sergey</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-58f7d466c63a3092355c044d428fa5267b102c6773de967735d22e76226f68893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Automorphisms</topic><topic>Eigenvalues</topic><topic>Group theory</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators (mathematics)</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Jonathan I.</creatorcontrib><creatorcontrib>Segev, Yoav</creatorcontrib><creatorcontrib>Shpectorov, Sergey</creatorcontrib><collection>CrossRef</collection><jtitle>Israel journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Jonathan I.</au><au>Segev, Yoav</au><au>Shpectorov, Sergey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Miyamoto involutions in axial algebras of Jordan type half</atitle><jtitle>Israel journal of mathematics</jtitle><stitle>Isr. J. Math</stitle><date>2018-02-01</date><risdate>2018</risdate><volume>223</volume><issue>1</issue><spage>261</spage><epage>308</epage><pages>261-308</pages><issn>0021-2172</issn><eissn>1565-8511</eissn><abstract>Nonassociative commutative algebras
A
, generated by idempotents
e
whose adjoint operators ad
e
:
A
→
A
, given by
x
↦
xe
, are diagonalizable and have few eigenvalues, are of recent interest. When certain fusion (multiplication) rules between the associated eigenspaces are imposed, the structure of these algebras remains rich yet rather rigid. For example, vertex operator algebras give rise to such algebras. The connection between the Monster algebra and Monster group extends to many axial algebras which then have interesting groups of automorphisms.
Axial algebras of Jordan type η are commutative algebras generated by idempotents whose adjoint operators have a minimal polynomial dividing (
x
-1)
x
(
x
-
η
), where
η
∉ {0, 1} is fixed, with well-defined and restrictive fusion rules. The case of η ≠1/2 was thoroughly analyzed by Hall, Rehren and Shpectorov in a recent paper, in which axial algebras were introduced. Here we focus on the case where
η
= 1/2, which is less understood and is of a different nature.</abstract><cop>Jerusalem</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11856-017-1615-7</doi><tpages>48</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-2172 |
ispartof | Israel journal of mathematics, 2018-02, Vol.223 (1), p.261-308 |
issn | 0021-2172 1565-8511 |
language | eng |
recordid | cdi_proquest_journals_2012623674 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Automorphisms Eigenvalues Group theory Group Theory and Generalizations Mathematical analysis Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators (mathematics) Theoretical |
title | Miyamoto involutions in axial algebras of Jordan type half |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A10%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Miyamoto%20involutions%20in%20axial%20algebras%20of%20Jordan%20type%20half&rft.jtitle=Israel%20journal%20of%20mathematics&rft.au=Hall,%20Jonathan%20I.&rft.date=2018-02-01&rft.volume=223&rft.issue=1&rft.spage=261&rft.epage=308&rft.pages=261-308&rft.issn=0021-2172&rft.eissn=1565-8511&rft_id=info:doi/10.1007/s11856-017-1615-7&rft_dat=%3Cproquest_cross%3E2012623674%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012623674&rft_id=info:pmid/&rfr_iscdi=true |