Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped

An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of solids 2017-11, Vol.52 (6), p.686-699
1. Verfasser: Papkov, S. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 699
container_issue 6
container_start_page 686
container_title Mechanics of solids
container_volume 52
creator Papkov, S. O.
description An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.
doi_str_mv 10.3103/S0025654417060085
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012622649</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012622649</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2add6478944721c062e8fbc45f6a363dbd10cfdaca1c9cbe135ab9d467bd70f13</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whek-ksS6lWKFiouh3z1CmZyZikYP-9GSq4EFeXe893zoUDwDVGtxQjerdFiJS8ZAxXiCM0K0_ABNeUFVVN-SmYjHIx6ufgIsYdyhAheALe5vHQDcmnVgnnDnD5JVSCW-_2qfU99BamDwM3wUtnunFdidD5vlXwtZVBjFAcz6KHSydijoEbEXKUcWZoB6MvwZkVLpqrnzkFL_fL58WqWD89PC7m60JRzFNBhNacVbOasYpghTgxMysVKy0XlFMtNUbKaqEEVrWSBtNSyFozXkldIYvpFNwcc4fgP_cmpmbn96HPLxuCMOGEcFZnCh8pFXyMwdhmCG0nwqHBqBmLbP4UmT3k6ImZ7d9N-E3-3_QNpuV1rw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012622649</pqid></control><display><type>article</type><title>Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped</title><source>SpringerNature Journals</source><creator>Papkov, S. O.</creator><creatorcontrib>Papkov, S. O.</creatorcontrib><description>An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.</description><identifier>ISSN: 0025-6544</identifier><identifier>EISSN: 1934-7936</identifier><identifier>DOI: 10.3103/S0025654417060085</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Asymptotic properties ; Classical Mechanics ; Elasticity ; Forced vibration ; Fourier series ; Linear algebra ; Physics ; Physics and Astronomy</subject><ispartof>Mechanics of solids, 2017-11, Vol.52 (6), p.686-699</ispartof><rights>Allerton Press, Inc. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2add6478944721c062e8fbc45f6a363dbd10cfdaca1c9cbe135ab9d467bd70f13</citedby><cites>FETCH-LOGICAL-c316t-2add6478944721c062e8fbc45f6a363dbd10cfdaca1c9cbe135ab9d467bd70f13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0025654417060085$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0025654417060085$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Papkov, S. O.</creatorcontrib><title>Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped</title><title>Mechanics of solids</title><addtitle>Mech. Solids</addtitle><description>An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.</description><subject>Asymptotic properties</subject><subject>Classical Mechanics</subject><subject>Elasticity</subject><subject>Forced vibration</subject><subject>Fourier series</subject><subject>Linear algebra</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0025-6544</issn><issn>1934-7936</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Whek-ksS6lWKFiouh3z1CmZyZikYP-9GSq4EFeXe893zoUDwDVGtxQjerdFiJS8ZAxXiCM0K0_ABNeUFVVN-SmYjHIx6ufgIsYdyhAheALe5vHQDcmnVgnnDnD5JVSCW-_2qfU99BamDwM3wUtnunFdidD5vlXwtZVBjFAcz6KHSydijoEbEXKUcWZoB6MvwZkVLpqrnzkFL_fL58WqWD89PC7m60JRzFNBhNacVbOasYpghTgxMysVKy0XlFMtNUbKaqEEVrWSBtNSyFozXkldIYvpFNwcc4fgP_cmpmbn96HPLxuCMOGEcFZnCh8pFXyMwdhmCG0nwqHBqBmLbP4UmT3k6ImZ7d9N-E3-3_QNpuV1rw</recordid><startdate>20171101</startdate><enddate>20171101</enddate><creator>Papkov, S. O.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20171101</creationdate><title>Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped</title><author>Papkov, S. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2add6478944721c062e8fbc45f6a363dbd10cfdaca1c9cbe135ab9d467bd70f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Asymptotic properties</topic><topic>Classical Mechanics</topic><topic>Elasticity</topic><topic>Forced vibration</topic><topic>Fourier series</topic><topic>Linear algebra</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Papkov, S. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Papkov, S. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped</atitle><jtitle>Mechanics of solids</jtitle><stitle>Mech. Solids</stitle><date>2017-11-01</date><risdate>2017</risdate><volume>52</volume><issue>6</issue><spage>686</spage><epage>699</epage><pages>686-699</pages><issn>0025-6544</issn><eissn>1934-7936</eissn><abstract>An asymptotically exact solution of the classical problem of elasticity about the steadystate forced vibrations of an elastic rectangular parallelepiped is constructed. The general solution of the vibration equations is constructed in the form of double Fourier series with undetermined coefficients, and an infinite system of linear algebraic equations is obtained for determining these coefficients. An analysis of the infinite system permits determining the asymptotics of the unknowns which are used to convolve the double series in both equations of the infinite systems and the displacement and stress components. The efficiency of this approach is illustrated by numerical examples and comparison with known solutions. The spectrum of the parallelepiped symmetric vibrations is studied for various ratios of its sides.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0025654417060085</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6544
ispartof Mechanics of solids, 2017-11, Vol.52 (6), p.686-699
issn 0025-6544
1934-7936
language eng
recordid cdi_proquest_journals_2012622649
source SpringerNature Journals
subjects Asymptotic properties
Classical Mechanics
Elasticity
Forced vibration
Fourier series
Linear algebra
Physics
Physics and Astronomy
title Asymptotically Exact Solution of the Problem of Harmonic Vibrations of an Elastic Parallelepiped
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T22%3A52%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotically%20Exact%20Solution%20of%20the%20Problem%20of%20Harmonic%20Vibrations%20of%20an%20Elastic%20Parallelepiped&rft.jtitle=Mechanics%20of%20solids&rft.au=Papkov,%20S.%20O.&rft.date=2017-11-01&rft.volume=52&rft.issue=6&rft.spage=686&rft.epage=699&rft.pages=686-699&rft.issn=0025-6544&rft.eissn=1934-7936&rft_id=info:doi/10.3103/S0025654417060085&rft_dat=%3Cproquest_cross%3E2012622649%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012622649&rft_id=info:pmid/&rfr_iscdi=true