Indecomposable cycles and arithmetic normal functions

We give conditions to determine if a cycle is indecomposable in the higher Chow group CH r ( X , m ; Q ) , for X a complex smooth projective variety. We show that the primitive part of topological invariant associated with an arithmetic normal function of a cycle is related to its decomposability.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Boletín de la Sociedad Matemática Mexicana 2018-04, Vol.24 (1), p.61-79
1. Verfasser: Castillo, José Jaime Hernández
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 79
container_issue 1
container_start_page 61
container_title Boletín de la Sociedad Matemática Mexicana
container_volume 24
creator Castillo, José Jaime Hernández
description We give conditions to determine if a cycle is indecomposable in the higher Chow group CH r ( X , m ; Q ) , for X a complex smooth projective variety. We show that the primitive part of topological invariant associated with an arithmetic normal function of a cycle is related to its decomposability.
doi_str_mv 10.1007/s40590-016-0146-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012608888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2012608888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-5e86e81f4a1eb320e60ef7f54209bc8fb2abe440ab0a959f0f352db86a1d27213</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWLQfwNuC5-hMNkl3j1L8Uyh4UfAWkmyiW3aTmmwP_famrODJgWEO896b4UfIDcIdAqzuMwfRAgWUpbmk7IwsGGsl5bwV52SBZU8Z1h-XZJnzDgAQaxAgFkRsQudsHPcxazO4yh7t4HKlQ1fp1E9fo5t6W4WYRj1U_hDs1MeQr8mF10N2y995Rd6fHt_WL3T7-rxZP2yprVFOVLhGugY91-hMzcBJcH7lBWfQGtt4w7RxnIM2oFvRevC1YJ1ppMaOrcrDV-R2zt2n-H1weVK7eEihnFQMkEloShUVziqbYs7JebVP_ajTUSGoEyA1A1IFkDoBUqx42OzJRRs-XfpL_t_0A_M9Z7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012608888</pqid></control><display><type>article</type><title>Indecomposable cycles and arithmetic normal functions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Castillo, José Jaime Hernández</creator><creatorcontrib>Castillo, José Jaime Hernández</creatorcontrib><description>We give conditions to determine if a cycle is indecomposable in the higher Chow group CH r ( X , m ; Q ) , for X a complex smooth projective variety. We show that the primitive part of topological invariant associated with an arithmetic normal function of a cycle is related to its decomposability.</description><identifier>ISSN: 1405-213X</identifier><identifier>EISSN: 2296-4495</identifier><identifier>DOI: 10.1007/s40590-016-0146-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Arithmetic ; Mathematics ; Mathematics and Statistics ; Original Article</subject><ispartof>Boletín de la Sociedad Matemática Mexicana, 2018-04, Vol.24 (1), p.61-79</ispartof><rights>Sociedad Matemática Mexicana 2016</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-5e86e81f4a1eb320e60ef7f54209bc8fb2abe440ab0a959f0f352db86a1d27213</citedby><cites>FETCH-LOGICAL-c316t-5e86e81f4a1eb320e60ef7f54209bc8fb2abe440ab0a959f0f352db86a1d27213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40590-016-0146-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40590-016-0146-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Castillo, José Jaime Hernández</creatorcontrib><title>Indecomposable cycles and arithmetic normal functions</title><title>Boletín de la Sociedad Matemática Mexicana</title><addtitle>Bol. Soc. Mat. Mex</addtitle><description>We give conditions to determine if a cycle is indecomposable in the higher Chow group CH r ( X , m ; Q ) , for X a complex smooth projective variety. We show that the primitive part of topological invariant associated with an arithmetic normal function of a cycle is related to its decomposability.</description><subject>Arithmetic</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Article</subject><issn>1405-213X</issn><issn>2296-4495</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWLQfwNuC5-hMNkl3j1L8Uyh4UfAWkmyiW3aTmmwP_famrODJgWEO896b4UfIDcIdAqzuMwfRAgWUpbmk7IwsGGsl5bwV52SBZU8Z1h-XZJnzDgAQaxAgFkRsQudsHPcxazO4yh7t4HKlQ1fp1E9fo5t6W4WYRj1U_hDs1MeQr8mF10N2y995Rd6fHt_WL3T7-rxZP2yprVFOVLhGugY91-hMzcBJcH7lBWfQGtt4w7RxnIM2oFvRevC1YJ1ppMaOrcrDV-R2zt2n-H1weVK7eEihnFQMkEloShUVziqbYs7JebVP_ajTUSGoEyA1A1IFkDoBUqx42OzJRRs-XfpL_t_0A_M9Z7A</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Castillo, José Jaime Hernández</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Indecomposable cycles and arithmetic normal functions</title><author>Castillo, José Jaime Hernández</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-5e86e81f4a1eb320e60ef7f54209bc8fb2abe440ab0a959f0f352db86a1d27213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Arithmetic</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Article</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castillo, José Jaime Hernández</creatorcontrib><collection>CrossRef</collection><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castillo, José Jaime Hernández</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Indecomposable cycles and arithmetic normal functions</atitle><jtitle>Boletín de la Sociedad Matemática Mexicana</jtitle><stitle>Bol. Soc. Mat. Mex</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>24</volume><issue>1</issue><spage>61</spage><epage>79</epage><pages>61-79</pages><issn>1405-213X</issn><eissn>2296-4495</eissn><abstract>We give conditions to determine if a cycle is indecomposable in the higher Chow group CH r ( X , m ; Q ) , for X a complex smooth projective variety. We show that the primitive part of topological invariant associated with an arithmetic normal function of a cycle is related to its decomposability.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40590-016-0146-2</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1405-213X
ispartof Boletín de la Sociedad Matemática Mexicana, 2018-04, Vol.24 (1), p.61-79
issn 1405-213X
2296-4495
language eng
recordid cdi_proquest_journals_2012608888
source SpringerLink Journals - AutoHoldings
subjects Arithmetic
Mathematics
Mathematics and Statistics
Original Article
title Indecomposable cycles and arithmetic normal functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Indecomposable%20cycles%20and%20arithmetic%20normal%20functions&rft.jtitle=Bolet%C3%ADn%20de%20la%20Sociedad%20Matem%C3%A1tica%20Mexicana&rft.au=Castillo,%20Jos%C3%A9%20Jaime%20Hern%C3%A1ndez&rft.date=2018-04-01&rft.volume=24&rft.issue=1&rft.spage=61&rft.epage=79&rft.pages=61-79&rft.issn=1405-213X&rft.eissn=2296-4495&rft_id=info:doi/10.1007/s40590-016-0146-2&rft_dat=%3Cproquest_cross%3E2012608888%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012608888&rft_id=info:pmid/&rfr_iscdi=true