Mean-square Stability of Stochastic Age-dependent Delay Population Systems with Jumps

In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems(SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2018, Vol.34 (1), p.145-154
Hauptverfasser: Li, Qiang, Zhang, Qi-min, Cao, Bo-qiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 1
container_start_page 145
container_title Acta Mathematicae Applicatae Sinica
container_volume 34
creator Li, Qiang
Zhang, Qi-min
Cao, Bo-qiang
description In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems(SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution is derived. It is shown that the compensated stochastic θ method inherits stability property of the numerical solutions. Finally,the theoretical results are also confirmed by a numerical experiment.
doi_str_mv 10.1007/s10255-018-0732-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012172448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674224161</cqvip_id><sourcerecordid>2012172448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-64accecc079828691dd75275a99ff0d605cde658205b028088b7fcbf3c616ddd3</originalsourceid><addsrcrecordid>eNp9kV1LwzAUhoMoOKc_wLui19GTpE3SyzG_mSjMXYc0SbeOru2aFNm_N2ND77w6vPB-wHMQuiZwRwDEvSdAswwDkRgEo5idoBHhUbGc0VM0AsIlzrlg5-jC-zUAEYyLEVq8O91gvx1075J50EVVV2GXtGUUrVlpHyqTTJYOW9e5xromJA-u1rvks-2GWoeqbZL5zge38cl3FVbJ27Dp_CU6K3Xt3dXxjtHi6fFr-oJnH8-v08kMG5aygHmqjXHGgMgllTwn1oqMikzneVmC5ZAZ63gmKWQFUAlSFqI0RckMJ9xay8bo9tDb9e12cD6odTv0TZxUFAglgqapjC5ycJm-9b53per6aqP7nSKg9vTUgZ6K9NSenmIxQw8ZH73N0vV_zf-Fbo5Dq7ZZbmPud4mLlNI0foT9AP7ZfaI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012172448</pqid></control><display><type>article</type><title>Mean-square Stability of Stochastic Age-dependent Delay Population Systems with Jumps</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Li, Qiang ; Zhang, Qi-min ; Cao, Bo-qiang</creator><creatorcontrib>Li, Qiang ; Zhang, Qi-min ; Cao, Bo-qiang</creatorcontrib><description>In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems(SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution is derived. It is shown that the compensated stochastic θ method inherits stability property of the numerical solutions. Finally,the theoretical results are also confirmed by a numerical experiment.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0732-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Delay ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Stability ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.145-154</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-64accecc079828691dd75275a99ff0d605cde658205b028088b7fcbf3c616ddd3</citedby><cites>FETCH-LOGICAL-c343t-64accecc079828691dd75275a99ff0d605cde658205b028088b7fcbf3c616ddd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0732-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0732-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27902,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhang, Qi-min</creatorcontrib><creatorcontrib>Cao, Bo-qiang</creatorcontrib><title>Mean-square Stability of Stochastic Age-dependent Delay Population Systems with Jumps</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems(SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution is derived. It is shown that the compensated stochastic θ method inherits stability property of the numerical solutions. Finally,the theoretical results are also confirmed by a numerical experiment.</description><subject>Applications of Mathematics</subject><subject>Delay</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Stability</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kV1LwzAUhoMoOKc_wLui19GTpE3SyzG_mSjMXYc0SbeOru2aFNm_N2ND77w6vPB-wHMQuiZwRwDEvSdAswwDkRgEo5idoBHhUbGc0VM0AsIlzrlg5-jC-zUAEYyLEVq8O91gvx1075J50EVVV2GXtGUUrVlpHyqTTJYOW9e5xromJA-u1rvks-2GWoeqbZL5zge38cl3FVbJ27Dp_CU6K3Xt3dXxjtHi6fFr-oJnH8-v08kMG5aygHmqjXHGgMgllTwn1oqMikzneVmC5ZAZ63gmKWQFUAlSFqI0RckMJ9xay8bo9tDb9e12cD6odTv0TZxUFAglgqapjC5ycJm-9b53per6aqP7nSKg9vTUgZ6K9NSenmIxQw8ZH73N0vV_zf-Fbo5Dq7ZZbmPud4mLlNI0foT9AP7ZfaI</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Li, Qiang</creator><creator>Zhang, Qi-min</creator><creator>Cao, Bo-qiang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Mean-square Stability of Stochastic Age-dependent Delay Population Systems with Jumps</title><author>Li, Qiang ; Zhang, Qi-min ; Cao, Bo-qiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-64accecc079828691dd75275a99ff0d605cde658205b028088b7fcbf3c616ddd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Delay</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Stability</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Qiang</creatorcontrib><creatorcontrib>Zhang, Qi-min</creatorcontrib><creatorcontrib>Cao, Bo-qiang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Qiang</au><au>Zhang, Qi-min</au><au>Cao, Bo-qiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mean-square Stability of Stochastic Age-dependent Delay Population Systems with Jumps</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>145</spage><epage>154</epage><pages>145-154</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, we present the compensated stochastic θ method for stochastic age-dependent delay population systems(SADDPSs) with Poisson jumps. The definition of mean-square stability of the numerical solution is given and a sufficient condition for mean-square stability of the numerical solution is derived. It is shown that the compensated stochastic θ method inherits stability property of the numerical solutions. Finally,the theoretical results are also confirmed by a numerical experiment.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0732-3</doi><tpages>10</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.145-154
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2012172448
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Delay
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Stability
Theoretical
title Mean-square Stability of Stochastic Age-dependent Delay Population Systems with Jumps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mean-square%20Stability%20of%20Stochastic%20Age-dependent%20Delay%20Population%20Systems%20with%20Jumps&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Li,%20Qiang&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=145&rft.epage=154&rft.pages=145-154&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0732-3&rft_dat=%3Cproquest_cross%3E2012172448%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012172448&rft_id=info:pmid/&rft_cqvip_id=674224161&rfr_iscdi=true