On Local Spectral Properties of Hamilton Type Operators
In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's...
Gespeichert in:
Veröffentlicht in: | Acta Mathematicae Applicatae Sinica 2018, Vol.34 (1), p.173-182 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 1 |
container_start_page | 173 |
container_title | Acta Mathematicae Applicatae Sinica |
container_volume | 34 |
creator | Shen, Jun-li Alatancang |
description | In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does. |
doi_str_mv | 10.1007/s10255-018-0736-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012172367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674224164</cqvip_id><sourcerecordid>2012172367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEP4FbBuRAnaZIe0QQMadKQGOfI69yxaWu6pDuMX0-mTnDjZFt-H_Zj7Bb4A3BuHiNwURQ5B5tzI3X-fcYGoNMkSynO2YCDtnmpjbxkVzGuOYeEMgNmpk028RVuso-Wqi6k5j34lkK3opj5OhvjdrXpfJPNDi1l07TBzod4zS5q3ES6OdUh-3x5no3G-WT6-jZ6muSVVLLLFcqytkJKlOkarJEAsSwsGiI-X6BdEMJiTlhYA1IZXikkY4UusFCi0nLI7nvdNvjdnmLn1n4fmmTpBAcBRqQ3Egp6VBV8jIFq14bVFsPBAXfHfFyfj0v5uGM-7jtxRM-JCdssKfwp_0e6Oxl9-Wa5S7xfJ22UEAq0kj95PHM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012172367</pqid></control><display><type>article</type><title>On Local Spectral Properties of Hamilton Type Operators</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Jun-li ; Alatancang</creator><creatorcontrib>Shen, Jun-li ; Alatancang</creatorcontrib><description>In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0736-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.173-182</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</citedby><cites>FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0736-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0736-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shen, Jun-li</creatorcontrib><creatorcontrib>Alatancang</creatorcontrib><title>On Local Spectral Properties of Hamilton Type Operators</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEP4FbBuRAnaZIe0QQMadKQGOfI69yxaWu6pDuMX0-mTnDjZFt-H_Zj7Bb4A3BuHiNwURQ5B5tzI3X-fcYGoNMkSynO2YCDtnmpjbxkVzGuOYeEMgNmpk028RVuso-Wqi6k5j34lkK3opj5OhvjdrXpfJPNDi1l07TBzod4zS5q3ES6OdUh-3x5no3G-WT6-jZ6muSVVLLLFcqytkJKlOkarJEAsSwsGiI-X6BdEMJiTlhYA1IZXikkY4UusFCi0nLI7nvdNvjdnmLn1n4fmmTpBAcBRqQ3Egp6VBV8jIFq14bVFsPBAXfHfFyfj0v5uGM-7jtxRM-JCdssKfwp_0e6Oxl9-Wa5S7xfJ22UEAq0kj95PHM6</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Shen, Jun-li</creator><creator>Alatancang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>On Local Spectral Properties of Hamilton Type Operators</title><author>Shen, Jun-li ; Alatancang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun-li</creatorcontrib><creatorcontrib>Alatancang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jun-li</au><au>Alatancang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Local Spectral Properties of Hamilton Type Operators</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>173</spage><epage>182</epage><pages>173-182</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0736-z</doi><tpages>10</tpages><edition>English series</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9673 |
ispartof | Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.173-182 |
issn | 0168-9673 1618-3932 |
language | eng |
recordid | cdi_proquest_journals_2012172367 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Math Applications in Computer Science Mathematical and Computational Physics Mathematics Mathematics and Statistics Operators Theoretical |
title | On Local Spectral Properties of Hamilton Type Operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Local%20Spectral%20Properties%20of%20Hamilton%20Type%20Operators&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Shen,%20Jun-li&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=173&rft.epage=182&rft.pages=173-182&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0736-z&rft_dat=%3Cproquest_cross%3E2012172367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012172367&rft_id=info:pmid/&rft_cqvip_id=674224164&rfr_iscdi=true |