On Local Spectral Properties of Hamilton Type Operators

In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta Mathematicae Applicatae Sinica 2018, Vol.34 (1), p.173-182
Hauptverfasser: Shen, Jun-li, Alatancang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 173
container_title Acta Mathematicae Applicatae Sinica
container_volume 34
creator Shen, Jun-li
Alatancang
description In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.
doi_str_mv 10.1007/s10255-018-0736-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012172367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>674224164</cqvip_id><sourcerecordid>2012172367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEP4FbBuRAnaZIe0QQMadKQGOfI69yxaWu6pDuMX0-mTnDjZFt-H_Zj7Bb4A3BuHiNwURQ5B5tzI3X-fcYGoNMkSynO2YCDtnmpjbxkVzGuOYeEMgNmpk028RVuso-Wqi6k5j34lkK3opj5OhvjdrXpfJPNDi1l07TBzod4zS5q3ES6OdUh-3x5no3G-WT6-jZ6muSVVLLLFcqytkJKlOkarJEAsSwsGiI-X6BdEMJiTlhYA1IZXikkY4UusFCi0nLI7nvdNvjdnmLn1n4fmmTpBAcBRqQ3Egp6VBV8jIFq14bVFsPBAXfHfFyfj0v5uGM-7jtxRM-JCdssKfwp_0e6Oxl9-Wa5S7xfJ22UEAq0kj95PHM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012172367</pqid></control><display><type>article</type><title>On Local Spectral Properties of Hamilton Type Operators</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Jun-li ; Alatancang</creator><creatorcontrib>Shen, Jun-li ; Alatancang</creatorcontrib><description>In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.</description><edition>English series</edition><identifier>ISSN: 0168-9673</identifier><identifier>EISSN: 1618-3932</identifier><identifier>DOI: 10.1007/s10255-018-0736-z</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applications of Mathematics ; Math Applications in Computer Science ; Mathematical and Computational Physics ; Mathematics ; Mathematics and Statistics ; Operators ; Theoretical</subject><ispartof>Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.173-182</ispartof><rights>Institute of Applied Mathematics, Academy of Mathematics and System Sciences, Chinese Academy of Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</citedby><cites>FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85829X/85829X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10255-018-0736-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10255-018-0736-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Shen, Jun-li</creatorcontrib><creatorcontrib>Alatancang</creatorcontrib><title>On Local Spectral Properties of Hamilton Type Operators</title><title>Acta Mathematicae Applicatae Sinica</title><addtitle>Acta Math. Appl. Sin. Engl. Ser</addtitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><description>In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.</description><subject>Applications of Mathematics</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operators</subject><subject>Theoretical</subject><issn>0168-9673</issn><issn>1618-3932</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEP4FbBuRAnaZIe0QQMadKQGOfI69yxaWu6pDuMX0-mTnDjZFt-H_Zj7Bb4A3BuHiNwURQ5B5tzI3X-fcYGoNMkSynO2YCDtnmpjbxkVzGuOYeEMgNmpk028RVuso-Wqi6k5j34lkK3opj5OhvjdrXpfJPNDi1l07TBzod4zS5q3ES6OdUh-3x5no3G-WT6-jZ6muSVVLLLFcqytkJKlOkarJEAsSwsGiI-X6BdEMJiTlhYA1IZXikkY4UusFCi0nLI7nvdNvjdnmLn1n4fmmTpBAcBRqQ3Egp6VBV8jIFq14bVFsPBAXfHfFyfj0v5uGM-7jtxRM-JCdssKfwp_0e6Oxl9-Wa5S7xfJ22UEAq0kj95PHM6</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Shen, Jun-li</creator><creator>Alatancang</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>On Local Spectral Properties of Hamilton Type Operators</title><author>Shen, Jun-li ; Alatancang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-4a39f8233a3161afae1aa958a7ee0bda8dea1dbea58713470c4ae78265a542c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operators</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Jun-li</creatorcontrib><creatorcontrib>Alatancang</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Acta Mathematicae Applicatae Sinica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Jun-li</au><au>Alatancang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Local Spectral Properties of Hamilton Type Operators</atitle><jtitle>Acta Mathematicae Applicatae Sinica</jtitle><stitle>Acta Math. Appl. Sin. Engl. Ser</stitle><addtitle>Acta Mathematicae Applicatae Sinica</addtitle><date>2018</date><risdate>2018</risdate><volume>34</volume><issue>1</issue><spage>173</spage><epage>182</epage><pages>173-182</pages><issn>0168-9673</issn><eissn>1618-3932</eissn><abstract>In this paper, we introduce the class of Hamilton type operators and study various properties of this class. We show that every Hamilton type operator with property(β) or(δ) is decomposable. In addition,we prove that a Hamilton type operator T satisfies property(β), Dunford's property(C) and Weyl's theorem if and only if its adjoint does.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10255-018-0736-z</doi><tpages>10</tpages><edition>English series</edition></addata></record>
fulltext fulltext
identifier ISSN: 0168-9673
ispartof Acta Mathematicae Applicatae Sinica, 2018, Vol.34 (1), p.173-182
issn 0168-9673
1618-3932
language eng
recordid cdi_proquest_journals_2012172367
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Operators
Theoretical
title On Local Spectral Properties of Hamilton Type Operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T07%3A39%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Local%20Spectral%20Properties%20of%20Hamilton%20Type%20Operators&rft.jtitle=Acta%20Mathematicae%20Applicatae%20Sinica&rft.au=Shen,%20Jun-li&rft.date=2018&rft.volume=34&rft.issue=1&rft.spage=173&rft.epage=182&rft.pages=173-182&rft.issn=0168-9673&rft.eissn=1618-3932&rft_id=info:doi/10.1007/s10255-018-0736-z&rft_dat=%3Cproquest_cross%3E2012172367%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012172367&rft_id=info:pmid/&rft_cqvip_id=674224164&rfr_iscdi=true