Materials and approaches for on-body energy harvesting

The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:MRS bulletin 2018-03, Vol.43 (3), p.206-213
Hauptverfasser: Roundy, Shad, Trolier-McKinstry, Susan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 213
container_issue 3
container_start_page 206
container_title MRS bulletin
container_volume 43
creator Roundy, Shad
Trolier-McKinstry, Susan
description The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal, the frequencies are very low, and the accelerations are modest. Kinetic harvesting can be split into two categories—inertial, in which human motion excites an inertial mass–the motion of which is transduced to electricity, and clothing integrated, in which the harvesting material is integrated with a garment or other flexible wearable system. In the first case, key issues are the electromechanical dynamics of the system and materials with improved electromechanical transduction figures of merit. In the second case, materials that provide flexibility, stretchability, and comfort are of primary importance.
doi_str_mv 10.1557/mrs.2018.33
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012065340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_mrs_2018_33</cupid><sourcerecordid>2012065340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-7fc058145c3f39b35544d03b1d30591f4e2a7d5128c4dd2e88f43b67102e228f3</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsrX2DApabe5CaTzFKKVaHiRtchM0mmU-xMTVqhb29KC27E1d185-ceQq4ZTJiU6n4V04QD0xPEEzJiFWrKBJenZARaI1VlJc7JRUpLACZByREpX-3Gx85-psL2rrDrdRxss_CpCEMshp7Wg9sVvvex3RULG7992nR9e0nOQtb4q-Mdk4_Z4_v0mc7fnl6mD3PaiEptqAoNSM2EbDBgVaOUQjjAmjkEWbEgPLfKScZ1I5zjXusgsC4VA-451wHH5Obgm2t9bXO2WQ7b2OdIk__kUEoUkKnbA9XEIaXog1nHbmXjzjAw-2FMHmYv0AYx03cHOmWqb3389fwbp0dzu6pj51r_P_8D8Tlydw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012065340</pqid></control><display><type>article</type><title>Materials and approaches for on-body energy harvesting</title><source>Cambridge Journals - CAUL Collection</source><source>Springer Nature - Complete Springer Journals</source><creator>Roundy, Shad ; Trolier-McKinstry, Susan</creator><creatorcontrib>Roundy, Shad ; Trolier-McKinstry, Susan</creatorcontrib><description>The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal, the frequencies are very low, and the accelerations are modest. Kinetic harvesting can be split into two categories—inertial, in which human motion excites an inertial mass–the motion of which is transduced to electricity, and clothing integrated, in which the harvesting material is integrated with a garment or other flexible wearable system. In the first case, key issues are the electromechanical dynamics of the system and materials with improved electromechanical transduction figures of merit. In the second case, materials that provide flexibility, stretchability, and comfort are of primary importance.</description><identifier>ISSN: 0883-7694</identifier><identifier>EISSN: 1938-1425</identifier><identifier>DOI: 10.1557/mrs.2018.33</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Applied and Technical Physics ; Batteries ; Characterization and Evaluation of Materials ; Energy harvesting ; Energy Materials ; Heat conductivity ; Human motion ; Materials Engineering ; Materials for Energy Harvesting ; Materials Science ; Nanotechnology ; Skin ; Stretchability ; Thermal energy</subject><ispartof>MRS bulletin, 2018-03, Vol.43 (3), p.206-213</ispartof><rights>Copyright © Materials Research Society 2018</rights><rights>The Materials Research Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-7fc058145c3f39b35544d03b1d30591f4e2a7d5128c4dd2e88f43b67102e228f3</citedby><cites>FETCH-LOGICAL-c497t-7fc058145c3f39b35544d03b1d30591f4e2a7d5128c4dd2e88f43b67102e228f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/mrs.2018.33$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0883769418000337/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,778,782,27911,27912,41475,42544,51306,55615</link.rule.ids></links><search><creatorcontrib>Roundy, Shad</creatorcontrib><creatorcontrib>Trolier-McKinstry, Susan</creatorcontrib><title>Materials and approaches for on-body energy harvesting</title><title>MRS bulletin</title><addtitle>MRS Bulletin</addtitle><addtitle>MRS Bull</addtitle><description>The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal, the frequencies are very low, and the accelerations are modest. Kinetic harvesting can be split into two categories—inertial, in which human motion excites an inertial mass–the motion of which is transduced to electricity, and clothing integrated, in which the harvesting material is integrated with a garment or other flexible wearable system. In the first case, key issues are the electromechanical dynamics of the system and materials with improved electromechanical transduction figures of merit. In the second case, materials that provide flexibility, stretchability, and comfort are of primary importance.</description><subject>Applied and Technical Physics</subject><subject>Batteries</subject><subject>Characterization and Evaluation of Materials</subject><subject>Energy harvesting</subject><subject>Energy Materials</subject><subject>Heat conductivity</subject><subject>Human motion</subject><subject>Materials Engineering</subject><subject>Materials for Energy Harvesting</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Skin</subject><subject>Stretchability</subject><subject>Thermal energy</subject><issn>0883-7694</issn><issn>1938-1425</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kM1KAzEUhYMoWKsrX2DApabe5CaTzFKKVaHiRtchM0mmU-xMTVqhb29KC27E1d185-ceQq4ZTJiU6n4V04QD0xPEEzJiFWrKBJenZARaI1VlJc7JRUpLACZByREpX-3Gx85-psL2rrDrdRxss_CpCEMshp7Wg9sVvvex3RULG7992nR9e0nOQtb4q-Mdk4_Z4_v0mc7fnl6mD3PaiEptqAoNSM2EbDBgVaOUQjjAmjkEWbEgPLfKScZ1I5zjXusgsC4VA-451wHH5Obgm2t9bXO2WQ7b2OdIk__kUEoUkKnbA9XEIaXog1nHbmXjzjAw-2FMHmYv0AYx03cHOmWqb3389fwbp0dzu6pj51r_P_8D8Tlydw</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Roundy, Shad</creator><creator>Trolier-McKinstry, Susan</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TA</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>S0W</scope></search><sort><creationdate>20180301</creationdate><title>Materials and approaches for on-body energy harvesting</title><author>Roundy, Shad ; Trolier-McKinstry, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-7fc058145c3f39b35544d03b1d30591f4e2a7d5128c4dd2e88f43b67102e228f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applied and Technical Physics</topic><topic>Batteries</topic><topic>Characterization and Evaluation of Materials</topic><topic>Energy harvesting</topic><topic>Energy Materials</topic><topic>Heat conductivity</topic><topic>Human motion</topic><topic>Materials Engineering</topic><topic>Materials for Energy Harvesting</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Skin</topic><topic>Stretchability</topic><topic>Thermal energy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Roundy, Shad</creatorcontrib><creatorcontrib>Trolier-McKinstry, Susan</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>MRS bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Roundy, Shad</au><au>Trolier-McKinstry, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Materials and approaches for on-body energy harvesting</atitle><jtitle>MRS bulletin</jtitle><stitle>MRS Bulletin</stitle><addtitle>MRS Bull</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>43</volume><issue>3</issue><spage>206</spage><epage>213</epage><pages>206-213</pages><issn>0883-7694</issn><eissn>1938-1425</eissn><abstract>The human body is a challenging platform for energy harvesting. For thermoelectrics, the small temperature differences between the skin and air necessitate materials with low thermal conductivities in order to maintain useful output powers. For kinetic harvesting, human motion is not strongly tonal, the frequencies are very low, and the accelerations are modest. Kinetic harvesting can be split into two categories—inertial, in which human motion excites an inertial mass–the motion of which is transduced to electricity, and clothing integrated, in which the harvesting material is integrated with a garment or other flexible wearable system. In the first case, key issues are the electromechanical dynamics of the system and materials with improved electromechanical transduction figures of merit. In the second case, materials that provide flexibility, stretchability, and comfort are of primary importance.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/mrs.2018.33</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0883-7694
ispartof MRS bulletin, 2018-03, Vol.43 (3), p.206-213
issn 0883-7694
1938-1425
language eng
recordid cdi_proquest_journals_2012065340
source Cambridge Journals - CAUL Collection; Springer Nature - Complete Springer Journals
subjects Applied and Technical Physics
Batteries
Characterization and Evaluation of Materials
Energy harvesting
Energy Materials
Heat conductivity
Human motion
Materials Engineering
Materials for Energy Harvesting
Materials Science
Nanotechnology
Skin
Stretchability
Thermal energy
title Materials and approaches for on-body energy harvesting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Materials%20and%20approaches%20for%20on-body%20energy%20harvesting&rft.jtitle=MRS%20bulletin&rft.au=Roundy,%20Shad&rft.date=2018-03-01&rft.volume=43&rft.issue=3&rft.spage=206&rft.epage=213&rft.pages=206-213&rft.issn=0883-7694&rft.eissn=1938-1425&rft_id=info:doi/10.1557/mrs.2018.33&rft_dat=%3Cproquest_cross%3E2012065340%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012065340&rft_id=info:pmid/&rft_cupid=10_1557_mrs_2018_33&rfr_iscdi=true