Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine

•Wavelet auto-encoder is designed with wavelet function to capture the signal characteristics.•A deep wavelet auto-encoder is constructed with multiple wavelet auto-encoders to enhance the unsupervised feature learning ability.•The proposed method effectively diagnoses the different fault types, dif...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Knowledge-based systems 2018-01, Vol.140, p.1-14
Hauptverfasser: Haidong, Shao, Hongkai, Jiang, Xingqiu, Li, Shuaipeng, Wu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 14
container_issue
container_start_page 1
container_title Knowledge-based systems
container_volume 140
creator Haidong, Shao
Hongkai, Jiang
Xingqiu, Li
Shuaipeng, Wu
description •Wavelet auto-encoder is designed with wavelet function to capture the signal characteristics.•A deep wavelet auto-encoder is constructed with multiple wavelet auto-encoders to enhance the unsupervised feature learning ability.•The proposed method effectively diagnoses the different fault types, different fault severities and different fault orientations of rolling bearing. Unsupervised feature learning from the raw vibration data is a great challenge for rolling bearing intelligent fault diagnosis. In this paper, a novel method called deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) is proposed for intelligent fault diagnosis of rolling bearing. Firstly, wavelet function is employed as the nonlinear activation function to design wavelet auto-encoder (WAE), which can effectively capture the signal characteristics. Secondly, a DWAE is constructed with multiple WAEs to enhance the unsupervised feature learning ability. Finally, ELM is adopted as the classifier to accurately identify different bearing faults. The proposed method is applied to analyze the experimental bearing vibration signals, and the results confirm that the proposed method is superior to the traditional methods and standard deep learning methods.
doi_str_mv 10.1016/j.knosys.2017.10.024
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2012061434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0950705117304938</els_id><sourcerecordid>2012061434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-d815fbe81884631c382ddb7e063485f116bf937ac07650b1df6450907fe178c13</originalsourceid><addsrcrecordid>eNp9UMFq3DAQFaGFbtP-QQ-Cnr2dsWVLewmU0KaBQC7pWcjSaKON19pKctL8fWS2517mwcx7b3iPsS8IWwQcvh22T3PMr3nbAsq62kIrLtgGlWwbKWD3jm1g10MjoccP7GPOBwBoW1QbNt3OhaYp7Gku3JtlKtwFs692IfPoeYr1OO_5SCatuOR1OqITfzHPNFHhZimxodlGR4m_hPLI6W9JdCQ-VdG88o_GPoaZPrH33kyZPv_DS_b754-H61_N3f3N7fX3u8Z2nSiNU9j7kRQqJYYObada50ZJMHRC9R5xGP2uk8aCHHoY0flB9LAD6Qmlsthdsq9n31OKfxbKRR_ikub6UteGWhhQdKKyxJllU8w5kdenFI4mvWoEvfaqD_rc66qS67b2WmVXZxnVBM-Bks421PjkQiJbtIvh_wZvvbOEZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2012061434</pqid></control><display><type>article</type><title>Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine</title><source>Access via ScienceDirect (Elsevier)</source><creator>Haidong, Shao ; Hongkai, Jiang ; Xingqiu, Li ; Shuaipeng, Wu</creator><creatorcontrib>Haidong, Shao ; Hongkai, Jiang ; Xingqiu, Li ; Shuaipeng, Wu</creatorcontrib><description>•Wavelet auto-encoder is designed with wavelet function to capture the signal characteristics.•A deep wavelet auto-encoder is constructed with multiple wavelet auto-encoders to enhance the unsupervised feature learning ability.•The proposed method effectively diagnoses the different fault types, different fault severities and different fault orientations of rolling bearing. Unsupervised feature learning from the raw vibration data is a great challenge for rolling bearing intelligent fault diagnosis. In this paper, a novel method called deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) is proposed for intelligent fault diagnosis of rolling bearing. Firstly, wavelet function is employed as the nonlinear activation function to design wavelet auto-encoder (WAE), which can effectively capture the signal characteristics. Secondly, a DWAE is constructed with multiple WAEs to enhance the unsupervised feature learning ability. Finally, ELM is adopted as the classifier to accurately identify different bearing faults. The proposed method is applied to analyze the experimental bearing vibration signals, and the results confirm that the proposed method is superior to the traditional methods and standard deep learning methods.</description><identifier>ISSN: 0950-7051</identifier><identifier>EISSN: 1872-7409</identifier><identifier>DOI: 10.1016/j.knosys.2017.10.024</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Artificial intelligence ; Bearing ; Deep wavelet auto-encoder ; Extreme learning machine ; Fault detection ; Fault diagnosis ; Intelligent fault diagnosis ; Machine learning ; Neural networks ; Rolling bearing ; Teaching methods ; Unsupervised feature learning ; Vibration analysis ; Wavelet analysis</subject><ispartof>Knowledge-based systems, 2018-01, Vol.140, p.1-14</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-d815fbe81884631c382ddb7e063485f116bf937ac07650b1df6450907fe178c13</citedby><cites>FETCH-LOGICAL-c334t-d815fbe81884631c382ddb7e063485f116bf937ac07650b1df6450907fe178c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.knosys.2017.10.024$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,781,785,3551,27928,27929,45999</link.rule.ids></links><search><creatorcontrib>Haidong, Shao</creatorcontrib><creatorcontrib>Hongkai, Jiang</creatorcontrib><creatorcontrib>Xingqiu, Li</creatorcontrib><creatorcontrib>Shuaipeng, Wu</creatorcontrib><title>Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine</title><title>Knowledge-based systems</title><description>•Wavelet auto-encoder is designed with wavelet function to capture the signal characteristics.•A deep wavelet auto-encoder is constructed with multiple wavelet auto-encoders to enhance the unsupervised feature learning ability.•The proposed method effectively diagnoses the different fault types, different fault severities and different fault orientations of rolling bearing. Unsupervised feature learning from the raw vibration data is a great challenge for rolling bearing intelligent fault diagnosis. In this paper, a novel method called deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) is proposed for intelligent fault diagnosis of rolling bearing. Firstly, wavelet function is employed as the nonlinear activation function to design wavelet auto-encoder (WAE), which can effectively capture the signal characteristics. Secondly, a DWAE is constructed with multiple WAEs to enhance the unsupervised feature learning ability. Finally, ELM is adopted as the classifier to accurately identify different bearing faults. The proposed method is applied to analyze the experimental bearing vibration signals, and the results confirm that the proposed method is superior to the traditional methods and standard deep learning methods.</description><subject>Artificial intelligence</subject><subject>Bearing</subject><subject>Deep wavelet auto-encoder</subject><subject>Extreme learning machine</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Intelligent fault diagnosis</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Rolling bearing</subject><subject>Teaching methods</subject><subject>Unsupervised feature learning</subject><subject>Vibration analysis</subject><subject>Wavelet analysis</subject><issn>0950-7051</issn><issn>1872-7409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UMFq3DAQFaGFbtP-QQ-Cnr2dsWVLewmU0KaBQC7pWcjSaKON19pKctL8fWS2517mwcx7b3iPsS8IWwQcvh22T3PMr3nbAsq62kIrLtgGlWwbKWD3jm1g10MjoccP7GPOBwBoW1QbNt3OhaYp7Gku3JtlKtwFs692IfPoeYr1OO_5SCatuOR1OqITfzHPNFHhZimxodlGR4m_hPLI6W9JdCQ-VdG88o_GPoaZPrH33kyZPv_DS_b754-H61_N3f3N7fX3u8Z2nSiNU9j7kRQqJYYObada50ZJMHRC9R5xGP2uk8aCHHoY0flB9LAD6Qmlsthdsq9n31OKfxbKRR_ikub6UteGWhhQdKKyxJllU8w5kdenFI4mvWoEvfaqD_rc66qS67b2WmVXZxnVBM-Bks421PjkQiJbtIvh_wZvvbOEZA</recordid><startdate>20180115</startdate><enddate>20180115</enddate><creator>Haidong, Shao</creator><creator>Hongkai, Jiang</creator><creator>Xingqiu, Li</creator><creator>Shuaipeng, Wu</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20180115</creationdate><title>Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine</title><author>Haidong, Shao ; Hongkai, Jiang ; Xingqiu, Li ; Shuaipeng, Wu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-d815fbe81884631c382ddb7e063485f116bf937ac07650b1df6450907fe178c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial intelligence</topic><topic>Bearing</topic><topic>Deep wavelet auto-encoder</topic><topic>Extreme learning machine</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Intelligent fault diagnosis</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Rolling bearing</topic><topic>Teaching methods</topic><topic>Unsupervised feature learning</topic><topic>Vibration analysis</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haidong, Shao</creatorcontrib><creatorcontrib>Hongkai, Jiang</creatorcontrib><creatorcontrib>Xingqiu, Li</creatorcontrib><creatorcontrib>Shuaipeng, Wu</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Knowledge-based systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haidong, Shao</au><au>Hongkai, Jiang</au><au>Xingqiu, Li</au><au>Shuaipeng, Wu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine</atitle><jtitle>Knowledge-based systems</jtitle><date>2018-01-15</date><risdate>2018</risdate><volume>140</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0950-7051</issn><eissn>1872-7409</eissn><abstract>•Wavelet auto-encoder is designed with wavelet function to capture the signal characteristics.•A deep wavelet auto-encoder is constructed with multiple wavelet auto-encoders to enhance the unsupervised feature learning ability.•The proposed method effectively diagnoses the different fault types, different fault severities and different fault orientations of rolling bearing. Unsupervised feature learning from the raw vibration data is a great challenge for rolling bearing intelligent fault diagnosis. In this paper, a novel method called deep wavelet auto-encoder (DWAE) with extreme learning machine (ELM) is proposed for intelligent fault diagnosis of rolling bearing. Firstly, wavelet function is employed as the nonlinear activation function to design wavelet auto-encoder (WAE), which can effectively capture the signal characteristics. Secondly, a DWAE is constructed with multiple WAEs to enhance the unsupervised feature learning ability. Finally, ELM is adopted as the classifier to accurately identify different bearing faults. The proposed method is applied to analyze the experimental bearing vibration signals, and the results confirm that the proposed method is superior to the traditional methods and standard deep learning methods.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.knosys.2017.10.024</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0950-7051
ispartof Knowledge-based systems, 2018-01, Vol.140, p.1-14
issn 0950-7051
1872-7409
language eng
recordid cdi_proquest_journals_2012061434
source Access via ScienceDirect (Elsevier)
subjects Artificial intelligence
Bearing
Deep wavelet auto-encoder
Extreme learning machine
Fault detection
Fault diagnosis
Intelligent fault diagnosis
Machine learning
Neural networks
Rolling bearing
Teaching methods
Unsupervised feature learning
Vibration analysis
Wavelet analysis
title Intelligent fault diagnosis of rolling bearing using deep wavelet auto-encoder with extreme learning machine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T19%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20fault%20diagnosis%20of%20rolling%20bearing%20using%20deep%20wavelet%20auto-encoder%20with%20extreme%20learning%20machine&rft.jtitle=Knowledge-based%20systems&rft.au=Haidong,%20Shao&rft.date=2018-01-15&rft.volume=140&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0950-7051&rft.eissn=1872-7409&rft_id=info:doi/10.1016/j.knosys.2017.10.024&rft_dat=%3Cproquest_cross%3E2012061434%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2012061434&rft_id=info:pmid/&rft_els_id=S0950705117304938&rfr_iscdi=true