Role of composition heterogeneity on fracture micromechanisms of nodular cast iron

The aim of the present study is to explain the role of chemical composition and heterogeneity within the microstructure of nodular cast iron on the micromechanisms of fracture. The heterogeneity in chemical composition is revealed by a thorough study of the microstructure using scanning electron mic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials science and technology 2006-12, Vol.22 (12), p.1415-1422
Hauptverfasser: Konečná, R., Lejček, P., Nicoletto, G., Bartuška, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1422
container_issue 12
container_start_page 1415
container_title Materials science and technology
container_volume 22
creator Konečná, R.
Lejček, P.
Nicoletto, G.
Bartuška, P.
description The aim of the present study is to explain the role of chemical composition and heterogeneity within the microstructure of nodular cast iron on the micromechanisms of fracture. The heterogeneity in chemical composition is revealed by a thorough study of the microstructure using scanning electron microscopy, Auger electron spectroscopy and colour etching. The ferritic phase surrounding the graphite globules is enriched by silicon and depleted of manganese in the range of micrometres. Maximum manganese concentration is found in regions distant from these particles and in pearlitic regions. Simultaneously, ferritic grain boundaries in the vicinity of the graphite particles are enriched in phosphorus in the nanometer range. This interfacial segregation, reaching nearly 15 at.-%P, is most probably responsible for an embrittlement of these regions and the appearance of intercrystalline decohesion. An elastic-plastic finite element analysis of the ferritic/pearlitic microstructure demonstrates that a heterogeneous microstructure is locally subjected to heterogeneous stresses and strains, which are also expected to affect fracture mechanisms.
doi_str_mv 10.1179/174328406X129959
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_201170125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1179_174328406X129959</sage_id><sourcerecordid>29814844</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c142a3b00995aeced1b2d2b3e871c3ecd69175e793b54c3d75f7492f972d0def3</originalsourceid><addsrcrecordid>eNqFkUtLxDAUhYMoOD72LosLd9W82jS4ksEXDAiDgruSprczGdpkTFpk_r0pFYQBdXXh8J3DvfcgdEHwNSFC3hDBGS04zt8JlTKTB2g2SmnUxCGaYZqLFBcsP0YnIWwwxrmUcoaWS9dC4ppEu27rgumNs8kaevBuBRZMv0ui0Hil-8FD0hntXQd6rawJXRiN1tVDq3yiVegT4509Q0eNagOcf89T9PZw_zp_Shcvj8_zu0WqOaV9qgmnilUYx20VaKhJRWtaMSgE0Qx0nUsiMhCSVRnXrBZZI7ikjRS0xjU07BRdTblb7z4GCH3ZmaChbZUFN4SScUlykmf_glQWhBecR_ByD9y4wdt4RElx_DImdEzDExQ_EYKHptx60ym_KwkuxyrK_SqiJZ0sQa3gJ_MP_nbijW2c79Sn821d9mrXOh-rsNrE6351fwHbV5xQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201170125</pqid></control><display><type>article</type><title>Role of composition heterogeneity on fracture micromechanisms of nodular cast iron</title><source>SAGE Complete</source><creator>Konečná, R. ; Lejček, P. ; Nicoletto, G. ; Bartuška, P.</creator><creatorcontrib>Konečná, R. ; Lejček, P. ; Nicoletto, G. ; Bartuška, P.</creatorcontrib><description>The aim of the present study is to explain the role of chemical composition and heterogeneity within the microstructure of nodular cast iron on the micromechanisms of fracture. The heterogeneity in chemical composition is revealed by a thorough study of the microstructure using scanning electron microscopy, Auger electron spectroscopy and colour etching. The ferritic phase surrounding the graphite globules is enriched by silicon and depleted of manganese in the range of micrometres. Maximum manganese concentration is found in regions distant from these particles and in pearlitic regions. Simultaneously, ferritic grain boundaries in the vicinity of the graphite particles are enriched in phosphorus in the nanometer range. This interfacial segregation, reaching nearly 15 at.-%P, is most probably responsible for an embrittlement of these regions and the appearance of intercrystalline decohesion. An elastic-plastic finite element analysis of the ferritic/pearlitic microstructure demonstrates that a heterogeneous microstructure is locally subjected to heterogeneous stresses and strains, which are also expected to affect fracture mechanisms.</description><identifier>ISSN: 0267-0836</identifier><identifier>EISSN: 1743-2847</identifier><identifier>DOI: 10.1179/174328406X129959</identifier><identifier>CODEN: MSCTEP</identifier><language>eng</language><publisher>London, England: Taylor &amp; Francis</publisher><subject>Chemicals ; CONCENTRATION HETEROGENEITY ; DEFORMATION HETEROGENEITY ; Finite element analysis ; FINITE ELEMENT METHOD ; FRACTURE MICROMECHANISMS ; Fractures ; Materials science ; NODULAR CAST IRON ; Plastic deformation ; Scanning electron microscopy ; Silicon carbide ; Steel ; Wear resistance</subject><ispartof>Materials science and technology, 2006-12, Vol.22 (12), p.1415-1422</ispartof><rights>2006 Maney Publishing 2006</rights><rights>2006 Maney Publishing</rights><rights>Copyright Institute of Materials Dec 2006</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c422t-c142a3b00995aeced1b2d2b3e871c3ecd69175e793b54c3d75f7492f972d0def3</citedby><cites>FETCH-LOGICAL-c422t-c142a3b00995aeced1b2d2b3e871c3ecd69175e793b54c3d75f7492f972d0def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1179/174328406X129959$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1179/174328406X129959$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,776,780,21798,27901,27902,43597,43598</link.rule.ids></links><search><creatorcontrib>Konečná, R.</creatorcontrib><creatorcontrib>Lejček, P.</creatorcontrib><creatorcontrib>Nicoletto, G.</creatorcontrib><creatorcontrib>Bartuška, P.</creatorcontrib><title>Role of composition heterogeneity on fracture micromechanisms of nodular cast iron</title><title>Materials science and technology</title><description>The aim of the present study is to explain the role of chemical composition and heterogeneity within the microstructure of nodular cast iron on the micromechanisms of fracture. The heterogeneity in chemical composition is revealed by a thorough study of the microstructure using scanning electron microscopy, Auger electron spectroscopy and colour etching. The ferritic phase surrounding the graphite globules is enriched by silicon and depleted of manganese in the range of micrometres. Maximum manganese concentration is found in regions distant from these particles and in pearlitic regions. Simultaneously, ferritic grain boundaries in the vicinity of the graphite particles are enriched in phosphorus in the nanometer range. This interfacial segregation, reaching nearly 15 at.-%P, is most probably responsible for an embrittlement of these regions and the appearance of intercrystalline decohesion. An elastic-plastic finite element analysis of the ferritic/pearlitic microstructure demonstrates that a heterogeneous microstructure is locally subjected to heterogeneous stresses and strains, which are also expected to affect fracture mechanisms.</description><subject>Chemicals</subject><subject>CONCENTRATION HETEROGENEITY</subject><subject>DEFORMATION HETEROGENEITY</subject><subject>Finite element analysis</subject><subject>FINITE ELEMENT METHOD</subject><subject>FRACTURE MICROMECHANISMS</subject><subject>Fractures</subject><subject>Materials science</subject><subject>NODULAR CAST IRON</subject><subject>Plastic deformation</subject><subject>Scanning electron microscopy</subject><subject>Silicon carbide</subject><subject>Steel</subject><subject>Wear resistance</subject><issn>0267-0836</issn><issn>1743-2847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqFkUtLxDAUhYMoOD72LosLd9W82jS4ksEXDAiDgruSprczGdpkTFpk_r0pFYQBdXXh8J3DvfcgdEHwNSFC3hDBGS04zt8JlTKTB2g2SmnUxCGaYZqLFBcsP0YnIWwwxrmUcoaWS9dC4ppEu27rgumNs8kaevBuBRZMv0ui0Hil-8FD0hntXQd6rawJXRiN1tVDq3yiVegT4509Q0eNagOcf89T9PZw_zp_Shcvj8_zu0WqOaV9qgmnilUYx20VaKhJRWtaMSgE0Qx0nUsiMhCSVRnXrBZZI7ikjRS0xjU07BRdTblb7z4GCH3ZmaChbZUFN4SScUlykmf_glQWhBecR_ByD9y4wdt4RElx_DImdEzDExQ_EYKHptx60ym_KwkuxyrK_SqiJZ0sQa3gJ_MP_nbijW2c79Sn821d9mrXOh-rsNrE6351fwHbV5xQ</recordid><startdate>20061201</startdate><enddate>20061201</enddate><creator>Konečná, R.</creator><creator>Lejček, P.</creator><creator>Nicoletto, G.</creator><creator>Bartuška, P.</creator><general>Taylor &amp; Francis</general><general>SAGE Publications</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>M2P</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20061201</creationdate><title>Role of composition heterogeneity on fracture micromechanisms of nodular cast iron</title><author>Konečná, R. ; Lejček, P. ; Nicoletto, G. ; Bartuška, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c142a3b00995aeced1b2d2b3e871c3ecd69175e793b54c3d75f7492f972d0def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Chemicals</topic><topic>CONCENTRATION HETEROGENEITY</topic><topic>DEFORMATION HETEROGENEITY</topic><topic>Finite element analysis</topic><topic>FINITE ELEMENT METHOD</topic><topic>FRACTURE MICROMECHANISMS</topic><topic>Fractures</topic><topic>Materials science</topic><topic>NODULAR CAST IRON</topic><topic>Plastic deformation</topic><topic>Scanning electron microscopy</topic><topic>Silicon carbide</topic><topic>Steel</topic><topic>Wear resistance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Konečná, R.</creatorcontrib><creatorcontrib>Lejček, P.</creatorcontrib><creatorcontrib>Nicoletto, G.</creatorcontrib><creatorcontrib>Bartuška, P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Materials science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Konečná, R.</au><au>Lejček, P.</au><au>Nicoletto, G.</au><au>Bartuška, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of composition heterogeneity on fracture micromechanisms of nodular cast iron</atitle><jtitle>Materials science and technology</jtitle><date>2006-12-01</date><risdate>2006</risdate><volume>22</volume><issue>12</issue><spage>1415</spage><epage>1422</epage><pages>1415-1422</pages><issn>0267-0836</issn><eissn>1743-2847</eissn><coden>MSCTEP</coden><abstract>The aim of the present study is to explain the role of chemical composition and heterogeneity within the microstructure of nodular cast iron on the micromechanisms of fracture. The heterogeneity in chemical composition is revealed by a thorough study of the microstructure using scanning electron microscopy, Auger electron spectroscopy and colour etching. The ferritic phase surrounding the graphite globules is enriched by silicon and depleted of manganese in the range of micrometres. Maximum manganese concentration is found in regions distant from these particles and in pearlitic regions. Simultaneously, ferritic grain boundaries in the vicinity of the graphite particles are enriched in phosphorus in the nanometer range. This interfacial segregation, reaching nearly 15 at.-%P, is most probably responsible for an embrittlement of these regions and the appearance of intercrystalline decohesion. An elastic-plastic finite element analysis of the ferritic/pearlitic microstructure demonstrates that a heterogeneous microstructure is locally subjected to heterogeneous stresses and strains, which are also expected to affect fracture mechanisms.</abstract><cop>London, England</cop><pub>Taylor &amp; Francis</pub><doi>10.1179/174328406X129959</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0267-0836
ispartof Materials science and technology, 2006-12, Vol.22 (12), p.1415-1422
issn 0267-0836
1743-2847
language eng
recordid cdi_proquest_journals_201170125
source SAGE Complete
subjects Chemicals
CONCENTRATION HETEROGENEITY
DEFORMATION HETEROGENEITY
Finite element analysis
FINITE ELEMENT METHOD
FRACTURE MICROMECHANISMS
Fractures
Materials science
NODULAR CAST IRON
Plastic deformation
Scanning electron microscopy
Silicon carbide
Steel
Wear resistance
title Role of composition heterogeneity on fracture micromechanisms of nodular cast iron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A13%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20composition%20heterogeneity%20on%20fracture%20micromechanisms%20of%20nodular%20cast%20iron&rft.jtitle=Materials%20science%20and%20technology&rft.au=Kone%C4%8Dn%C3%A1,%20R.&rft.date=2006-12-01&rft.volume=22&rft.issue=12&rft.spage=1415&rft.epage=1422&rft.pages=1415-1422&rft.issn=0267-0836&rft.eissn=1743-2847&rft.coden=MSCTEP&rft_id=info:doi/10.1179/174328406X129959&rft_dat=%3Cproquest_cross%3E29814844%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201170125&rft_id=info:pmid/&rft_sage_id=10.1179_174328406X129959&rfr_iscdi=true