Quasivarieties of Graphs and Independent Axiomatizability
In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety K of graphs that contains a non-bipartite graph, we find a subquasivariety K ′ ⊆ K such that there exist 2 ω subquasivarieties K ″ ∈ L q ( K ′) without covers (hence, withou...
Gespeichert in:
Veröffentlicht in: | Siberian advances in mathematics 2018, Vol.28 (1), p.53-59 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 59 |
---|---|
container_issue | 1 |
container_start_page | 53 |
container_title | Siberian advances in mathematics |
container_volume | 28 |
creator | Kravchenko, A. V. Yakovlev, A. V. |
description | In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety
K
of graphs that contains a non-bipartite graph, we find a subquasivariety
K
′ ⊆
K
such that there exist 2
ω
subquasivarieties
K
″ ∈ L
q
(
K
′) without covers (hence, without independent bases for their quasi-identities in
K
′). |
doi_str_mv | 10.3103/S1055134418010042 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2011642055</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011642055</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2312-88189cd7dfaefbd87d9716196bed92efa5e990ea3e4a81955259fc31817e73b53</originalsourceid><addsrcrecordid>eNp1UFtLwzAUDqLgnP4A3wo-V3OSpkkex9A5GIiozyVtTjRja2vSivPXmzHBB_HlXPguh_MRcgn0mgPlN09AhQBeFKAoUFqwIzIBzYtcASuP05zgfI-fkrMY1zStWsoJ0Y-jif7DBI-Dx5h1LlsE07_FzLQ2W7YWe0ylHbLZp--2ZvBfpvYbP-zOyYkzm4gXP31KXu5un-f3-ephsZzPVnnDOLBcKVC6sdI6g662SlotoQRd1mg1Q2cEak3RcCyMAi0EE9o1HBRIlLwWfEquDr596N5HjEO17sbQppMVowBlwdIviQUHVhO6GAO6qg9-a8KuAlrtE6r-JJQ07KCJidu-Yvh1_l_0DWfdZr0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011642055</pqid></control><display><type>article</type><title>Quasivarieties of Graphs and Independent Axiomatizability</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kravchenko, A. V. ; Yakovlev, A. V.</creator><creatorcontrib>Kravchenko, A. V. ; Yakovlev, A. V.</creatorcontrib><description>In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety
K
of graphs that contains a non-bipartite graph, we find a subquasivariety
K
′ ⊆
K
such that there exist 2
ω
subquasivarieties
K
″ ∈ L
q
(
K
′) without covers (hence, without independent bases for their quasi-identities in
K
′).</description><identifier>ISSN: 1055-1344</identifier><identifier>EISSN: 1934-8126</identifier><identifier>DOI: 10.3103/S1055134418010042</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Graphs ; Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian advances in mathematics, 2018, Vol.28 (1), p.53-59</ispartof><rights>Allerton Press, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2312-88189cd7dfaefbd87d9716196bed92efa5e990ea3e4a81955259fc31817e73b53</citedby><cites>FETCH-LOGICAL-c2312-88189cd7dfaefbd87d9716196bed92efa5e990ea3e4a81955259fc31817e73b53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S1055134418010042$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S1055134418010042$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kravchenko, A. V.</creatorcontrib><creatorcontrib>Yakovlev, A. V.</creatorcontrib><title>Quasivarieties of Graphs and Independent Axiomatizability</title><title>Siberian advances in mathematics</title><addtitle>Sib. Adv. Math</addtitle><description>In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety
K
of graphs that contains a non-bipartite graph, we find a subquasivariety
K
′ ⊆
K
such that there exist 2
ω
subquasivarieties
K
″ ∈ L
q
(
K
′) without covers (hence, without independent bases for their quasi-identities in
K
′).</description><subject>Graphs</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1055-1344</issn><issn>1934-8126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UFtLwzAUDqLgnP4A3wo-V3OSpkkex9A5GIiozyVtTjRja2vSivPXmzHBB_HlXPguh_MRcgn0mgPlN09AhQBeFKAoUFqwIzIBzYtcASuP05zgfI-fkrMY1zStWsoJ0Y-jif7DBI-Dx5h1LlsE07_FzLQ2W7YWe0ylHbLZp--2ZvBfpvYbP-zOyYkzm4gXP31KXu5un-f3-ephsZzPVnnDOLBcKVC6sdI6g662SlotoQRd1mg1Q2cEak3RcCyMAi0EE9o1HBRIlLwWfEquDr596N5HjEO17sbQppMVowBlwdIviQUHVhO6GAO6qg9-a8KuAlrtE6r-JJQ07KCJidu-Yvh1_l_0DWfdZr0</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kravchenko, A. V.</creator><creator>Yakovlev, A. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2018</creationdate><title>Quasivarieties of Graphs and Independent Axiomatizability</title><author>Kravchenko, A. V. ; Yakovlev, A. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2312-88189cd7dfaefbd87d9716196bed92efa5e990ea3e4a81955259fc31817e73b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Graphs</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kravchenko, A. V.</creatorcontrib><creatorcontrib>Yakovlev, A. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian advances in mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kravchenko, A. V.</au><au>Yakovlev, A. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasivarieties of Graphs and Independent Axiomatizability</atitle><jtitle>Siberian advances in mathematics</jtitle><stitle>Sib. Adv. Math</stitle><date>2018</date><risdate>2018</risdate><volume>28</volume><issue>1</issue><spage>53</spage><epage>59</epage><pages>53-59</pages><issn>1055-1344</issn><eissn>1934-8126</eissn><abstract>In the present article, we continue to study the complexity of the lattice of quasivarieties of graphs. For every quasivariety
K
of graphs that contains a non-bipartite graph, we find a subquasivariety
K
′ ⊆
K
such that there exist 2
ω
subquasivarieties
K
″ ∈ L
q
(
K
′) without covers (hence, without independent bases for their quasi-identities in
K
′).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S1055134418010042</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1055-1344 |
ispartof | Siberian advances in mathematics, 2018, Vol.28 (1), p.53-59 |
issn | 1055-1344 1934-8126 |
language | eng |
recordid | cdi_proquest_journals_2011642055 |
source | SpringerLink Journals - AutoHoldings |
subjects | Graphs Mathematics Mathematics and Statistics |
title | Quasivarieties of Graphs and Independent Axiomatizability |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T20%3A14%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasivarieties%20of%20Graphs%20and%20Independent%20Axiomatizability&rft.jtitle=Siberian%20advances%20in%20mathematics&rft.au=Kravchenko,%20A.%20V.&rft.date=2018&rft.volume=28&rft.issue=1&rft.spage=53&rft.epage=59&rft.pages=53-59&rft.issn=1055-1344&rft.eissn=1934-8126&rft_id=info:doi/10.3103/S1055134418010042&rft_dat=%3Cproquest_cross%3E2011642055%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011642055&rft_id=info:pmid/&rfr_iscdi=true |