A splitting method for the augmented Burgers equation

In this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions behav...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:BIT 2018-03, Vol.58 (1), p.73-102
Hauptverfasser: Ignat, Liviu I., Pozo, Alejandro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 102
container_issue 1
container_start_page 73
container_title BIT
container_volume 58
creator Ignat, Liviu I.
Pozo, Alejandro
description In this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions behave as the self-similar solutions of the viscous Burgers equation.
doi_str_mv 10.1007/s10543-017-0673-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2011350721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2011350721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-779bad5daa8a297e8373db4e6fa72d99999004bcb4dca7507d26155b651924c3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4C3gOTqTbDbNsRatQsFL7yG7ybZb2t02yUJ9e1NW8ORc5vJ__zAfIY8IzwigXiKCLAQDVAxKJdj5ikxQKs40cnlNJgBQMjET8pbcxbgD4LpEMSFyTuNx36bUdht68GnbO9r0gaatp3bYHHyXvKOvQ9j4EKk_DTa1fXdPbhq7j_7hd0_J-v1tvfhgq6_l52K-YrWQOjGldGWddNbOLNfKz4QSrip82VjFnb4MQFHVVeFqqyQox0uUsiolal7UYkqextpj6E-Dj8ns-iF0-aLhgCgywTGncEzVoY8x-MYcQ3uw4dsgmIscM8oxWY65yDHnzPCRiTnb5d_-mv-HfgA5CGae</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011350721</pqid></control><display><type>article</type><title>A splitting method for the augmented Burgers equation</title><source>SpringerNature Complete Journals</source><creator>Ignat, Liviu I. ; Pozo, Alejandro</creator><creatorcontrib>Ignat, Liviu I. ; Pozo, Alejandro</creatorcontrib><description>In this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions behave as the self-similar solutions of the viscous Burgers equation.</description><identifier>ISSN: 0006-3835</identifier><identifier>EISSN: 1572-9125</identifier><identifier>DOI: 10.1007/s10543-017-0673-x</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Asymptotic series ; Burgers equation ; Computational Mathematics and Numerical Analysis ; Linear equations ; Mathematics ; Mathematics and Statistics ; Numeric Computing ; Self-similarity ; Splitting</subject><ispartof>BIT, 2018-03, Vol.58 (1), p.73-102</ispartof><rights>Springer Science+Business Media B.V. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-779bad5daa8a297e8373db4e6fa72d99999004bcb4dca7507d26155b651924c3</citedby><cites>FETCH-LOGICAL-c359t-779bad5daa8a297e8373db4e6fa72d99999004bcb4dca7507d26155b651924c3</cites><orcidid>0000-0003-1870-9934</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10543-017-0673-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10543-017-0673-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ignat, Liviu I.</creatorcontrib><creatorcontrib>Pozo, Alejandro</creatorcontrib><title>A splitting method for the augmented Burgers equation</title><title>BIT</title><addtitle>Bit Numer Math</addtitle><description>In this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions behave as the self-similar solutions of the viscous Burgers equation.</description><subject>Asymptotic series</subject><subject>Burgers equation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Linear equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numeric Computing</subject><subject>Self-similarity</subject><subject>Splitting</subject><issn>0006-3835</issn><issn>1572-9125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEQhoMoWKsP4C3gOTqTbDbNsRatQsFL7yG7ybZb2t02yUJ9e1NW8ORc5vJ__zAfIY8IzwigXiKCLAQDVAxKJdj5ikxQKs40cnlNJgBQMjET8pbcxbgD4LpEMSFyTuNx36bUdht68GnbO9r0gaatp3bYHHyXvKOvQ9j4EKk_DTa1fXdPbhq7j_7hd0_J-v1tvfhgq6_l52K-YrWQOjGldGWddNbOLNfKz4QSrip82VjFnb4MQFHVVeFqqyQox0uUsiolal7UYkqextpj6E-Dj8ns-iF0-aLhgCgywTGncEzVoY8x-MYcQ3uw4dsgmIscM8oxWY65yDHnzPCRiTnb5d_-mv-HfgA5CGae</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ignat, Liviu I.</creator><creator>Pozo, Alejandro</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1870-9934</orcidid></search><sort><creationdate>20180301</creationdate><title>A splitting method for the augmented Burgers equation</title><author>Ignat, Liviu I. ; Pozo, Alejandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-779bad5daa8a297e8373db4e6fa72d99999004bcb4dca7507d26155b651924c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Asymptotic series</topic><topic>Burgers equation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Linear equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numeric Computing</topic><topic>Self-similarity</topic><topic>Splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ignat, Liviu I.</creatorcontrib><creatorcontrib>Pozo, Alejandro</creatorcontrib><collection>CrossRef</collection><jtitle>BIT</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ignat, Liviu I.</au><au>Pozo, Alejandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A splitting method for the augmented Burgers equation</atitle><jtitle>BIT</jtitle><stitle>Bit Numer Math</stitle><date>2018-03-01</date><risdate>2018</risdate><volume>58</volume><issue>1</issue><spage>73</spage><epage>102</epage><pages>73-102</pages><issn>0006-3835</issn><eissn>1572-9125</eissn><abstract>In this paper we consider a splitting method for the augmented Burgers equation and prove that it is of first order. We also analyze the large-time behavior of the approximated solution by obtaining the first term in the asymptotic expansion. We prove that, when time increases, these solutions behave as the self-similar solutions of the viscous Burgers equation.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10543-017-0673-x</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-1870-9934</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3835
ispartof BIT, 2018-03, Vol.58 (1), p.73-102
issn 0006-3835
1572-9125
language eng
recordid cdi_proquest_journals_2011350721
source SpringerNature Complete Journals
subjects Asymptotic series
Burgers equation
Computational Mathematics and Numerical Analysis
Linear equations
Mathematics
Mathematics and Statistics
Numeric Computing
Self-similarity
Splitting
title A splitting method for the augmented Burgers equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T08%3A20%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20splitting%20method%20for%20the%20augmented%20Burgers%20equation&rft.jtitle=BIT&rft.au=Ignat,%20Liviu%20I.&rft.date=2018-03-01&rft.volume=58&rft.issue=1&rft.spage=73&rft.epage=102&rft.pages=73-102&rft.issn=0006-3835&rft.eissn=1572-9125&rft_id=info:doi/10.1007/s10543-017-0673-x&rft_dat=%3Cproquest_cross%3E2011350721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011350721&rft_id=info:pmid/&rfr_iscdi=true