Experimental Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns under Lateral Cyclic Load

The present study addresses the feasibility of reinforced concrete columns totally reinforced with glass fiber-reinforced polymer (GFRP) bars achieving the drift requirements specified in various codes. Eleven full-scale concrete columns--two reinforced with steel bars (as reference specimen) and ni...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACI structural journal 2018-03, Vol.115 (2), p.337-349
Hauptverfasser: Elshamandy, Mohammed G., Farghaly, Ahmed Sabry, Benmokrane, Brahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 349
container_issue 2
container_start_page 337
container_title ACI structural journal
container_volume 115
creator Elshamandy, Mohammed G.
Farghaly, Ahmed Sabry
Benmokrane, Brahim
description The present study addresses the feasibility of reinforced concrete columns totally reinforced with glass fiber-reinforced polymer (GFRP) bars achieving the drift requirements specified in various codes. Eleven full-scale concrete columns--two reinforced with steel bars (as reference specimen) and nine totally reinforced with GFRP bars--were constructed and tested to failure under quasi-static reversed cyclic lateral loading and simultaneously subjected to constant compression axial load. The reported test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. The results also show that the achieved drift satisfies the limitation in most building codes. Acceptable levels of energy dissipation and ductility parameters, compared to the steel-reinforced columns, were observed. The promising results can provide impetus for constructing concrete columns reinforced with GFRP and constitute a step toward using GFRP reinforcement in lateral-resisting systems such as reinforced concrete frames. Keywords: concrete columns; ductility parameters; energy dissipation; glass fiber-reinforced polymer (GFRP) bars; hysteretic response.
doi_str_mv 10.14359/51700985
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2011217853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A558678980</galeid><sourcerecordid>A558678980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-f240f6ad84f8a762e20cce0878884b94740b0c30f49a30c99f399716d5c547443</originalsourceid><addsrcrecordid>eNpVUMFOwzAMjRBIjMGBP6jEiUOH0yRtchzVNpAmgRCcqyx1oFPbjKRF7O8JDA7IB1vP7z3Lj5BLCjPKmVA3ghYASoojMqGK87RgOT0mE5BSpSzj9JSchbAFYJAxPiHd4nOHvumwH3Sb3OKb_micT5xNVq0OIVk2G_TpEza9dd5gnTy6dt_9h0rXG48DxqEduz4kY1-jT9Z6QB9Ny71pG5Osna7PyYnVbcCL3z4lL8vFc3mXrh9W9-V8nZpM5UNqMw4217XkVuoizzADYxBkIaXkG8ULDhswDCxXmoFRyjKlCprXwoi45GxKrg6-O-_eRwxDtXWj7-PJKgNKM1pIwSJrdmC96har73cGr02sGrvGuB5tE_G5EDIvpJIQBdcHgfEuBI-22sXotN9XFKqf-Ku_-NkXt7R2AQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2011217853</pqid></control><display><type>article</type><title>Experimental Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns under Lateral Cyclic Load</title><source>American Concrete Institute Online Journal Archives</source><creator>Elshamandy, Mohammed G. ; Farghaly, Ahmed Sabry ; Benmokrane, Brahim</creator><creatorcontrib>Elshamandy, Mohammed G. ; Farghaly, Ahmed Sabry ; Benmokrane, Brahim</creatorcontrib><description>The present study addresses the feasibility of reinforced concrete columns totally reinforced with glass fiber-reinforced polymer (GFRP) bars achieving the drift requirements specified in various codes. Eleven full-scale concrete columns--two reinforced with steel bars (as reference specimen) and nine totally reinforced with GFRP bars--were constructed and tested to failure under quasi-static reversed cyclic lateral loading and simultaneously subjected to constant compression axial load. The reported test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. The results also show that the achieved drift satisfies the limitation in most building codes. Acceptable levels of energy dissipation and ductility parameters, compared to the steel-reinforced columns, were observed. The promising results can provide impetus for constructing concrete columns reinforced with GFRP and constitute a step toward using GFRP reinforcement in lateral-resisting systems such as reinforced concrete frames. Keywords: concrete columns; ductility parameters; energy dissipation; glass fiber-reinforced polymer (GFRP) bars; hysteretic response.</description><identifier>ISSN: 0889-3241</identifier><identifier>EISSN: 1944-7361</identifier><identifier>DOI: 10.14359/51700985</identifier><language>eng</language><publisher>Farmington Hills: American Concrete Institute</publisher><subject>Analysis ; Axial loads ; Bars ; Building codes ; Compression tests ; Concrete ; Concrete columns ; Concrete construction ; Construction ; Cyclic loads ; Deformation ; Design ; Design and construction ; Drift ; Ductility ; Earthquakes ; Energy dissipation ; Feasibility studies ; Fiber reinforced concretes ; Fiber reinforced polymers ; Glass fiber reinforced plastics ; Glass reinforced plastics ; Lateral loads ; Load ; Materials ; Materials fatigue ; Polymers ; Properties ; Ratios ; Reinforced concrete ; Reinforcing steels ; Steel columns ; Stresses (Materials)</subject><ispartof>ACI structural journal, 2018-03, Vol.115 (2), p.337-349</ispartof><rights>COPYRIGHT 2018 American Concrete Institute</rights><rights>Copyright American Concrete Institute Mar 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-f240f6ad84f8a762e20cce0878884b94740b0c30f49a30c99f399716d5c547443</citedby><cites>FETCH-LOGICAL-c296t-f240f6ad84f8a762e20cce0878884b94740b0c30f49a30c99f399716d5c547443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Elshamandy, Mohammed G.</creatorcontrib><creatorcontrib>Farghaly, Ahmed Sabry</creatorcontrib><creatorcontrib>Benmokrane, Brahim</creatorcontrib><title>Experimental Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns under Lateral Cyclic Load</title><title>ACI structural journal</title><description>The present study addresses the feasibility of reinforced concrete columns totally reinforced with glass fiber-reinforced polymer (GFRP) bars achieving the drift requirements specified in various codes. Eleven full-scale concrete columns--two reinforced with steel bars (as reference specimen) and nine totally reinforced with GFRP bars--were constructed and tested to failure under quasi-static reversed cyclic lateral loading and simultaneously subjected to constant compression axial load. The reported test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. The results also show that the achieved drift satisfies the limitation in most building codes. Acceptable levels of energy dissipation and ductility parameters, compared to the steel-reinforced columns, were observed. The promising results can provide impetus for constructing concrete columns reinforced with GFRP and constitute a step toward using GFRP reinforcement in lateral-resisting systems such as reinforced concrete frames. Keywords: concrete columns; ductility parameters; energy dissipation; glass fiber-reinforced polymer (GFRP) bars; hysteretic response.</description><subject>Analysis</subject><subject>Axial loads</subject><subject>Bars</subject><subject>Building codes</subject><subject>Compression tests</subject><subject>Concrete</subject><subject>Concrete columns</subject><subject>Concrete construction</subject><subject>Construction</subject><subject>Cyclic loads</subject><subject>Deformation</subject><subject>Design</subject><subject>Design and construction</subject><subject>Drift</subject><subject>Ductility</subject><subject>Earthquakes</subject><subject>Energy dissipation</subject><subject>Feasibility studies</subject><subject>Fiber reinforced concretes</subject><subject>Fiber reinforced polymers</subject><subject>Glass fiber reinforced plastics</subject><subject>Glass reinforced plastics</subject><subject>Lateral loads</subject><subject>Load</subject><subject>Materials</subject><subject>Materials fatigue</subject><subject>Polymers</subject><subject>Properties</subject><subject>Ratios</subject><subject>Reinforced concrete</subject><subject>Reinforcing steels</subject><subject>Steel columns</subject><subject>Stresses (Materials)</subject><issn>0889-3241</issn><issn>1944-7361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpVUMFOwzAMjRBIjMGBP6jEiUOH0yRtchzVNpAmgRCcqyx1oFPbjKRF7O8JDA7IB1vP7z3Lj5BLCjPKmVA3ghYASoojMqGK87RgOT0mE5BSpSzj9JSchbAFYJAxPiHd4nOHvumwH3Sb3OKb_micT5xNVq0OIVk2G_TpEza9dd5gnTy6dt_9h0rXG48DxqEduz4kY1-jT9Z6QB9Ny71pG5Osna7PyYnVbcCL3z4lL8vFc3mXrh9W9-V8nZpM5UNqMw4217XkVuoizzADYxBkIaXkG8ULDhswDCxXmoFRyjKlCprXwoi45GxKrg6-O-_eRwxDtXWj7-PJKgNKM1pIwSJrdmC96har73cGr02sGrvGuB5tE_G5EDIvpJIQBdcHgfEuBI-22sXotN9XFKqf-Ku_-NkXt7R2AQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Elshamandy, Mohammed G.</creator><creator>Farghaly, Ahmed Sabry</creator><creator>Benmokrane, Brahim</creator><general>American Concrete Institute</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QQ</scope><scope>7SR</scope><scope>7XB</scope><scope>88I</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20180301</creationdate><title>Experimental Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns under Lateral Cyclic Load</title><author>Elshamandy, Mohammed G. ; Farghaly, Ahmed Sabry ; Benmokrane, Brahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-f240f6ad84f8a762e20cce0878884b94740b0c30f49a30c99f399716d5c547443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Axial loads</topic><topic>Bars</topic><topic>Building codes</topic><topic>Compression tests</topic><topic>Concrete</topic><topic>Concrete columns</topic><topic>Concrete construction</topic><topic>Construction</topic><topic>Cyclic loads</topic><topic>Deformation</topic><topic>Design</topic><topic>Design and construction</topic><topic>Drift</topic><topic>Ductility</topic><topic>Earthquakes</topic><topic>Energy dissipation</topic><topic>Feasibility studies</topic><topic>Fiber reinforced concretes</topic><topic>Fiber reinforced polymers</topic><topic>Glass fiber reinforced plastics</topic><topic>Glass reinforced plastics</topic><topic>Lateral loads</topic><topic>Load</topic><topic>Materials</topic><topic>Materials fatigue</topic><topic>Polymers</topic><topic>Properties</topic><topic>Ratios</topic><topic>Reinforced concrete</topic><topic>Reinforcing steels</topic><topic>Steel columns</topic><topic>Stresses (Materials)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elshamandy, Mohammed G.</creatorcontrib><creatorcontrib>Farghaly, Ahmed Sabry</creatorcontrib><creatorcontrib>Benmokrane, Brahim</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>ACI structural journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Elshamandy, Mohammed G.</au><au>Farghaly, Ahmed Sabry</au><au>Benmokrane, Brahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns under Lateral Cyclic Load</atitle><jtitle>ACI structural journal</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>115</volume><issue>2</issue><spage>337</spage><epage>349</epage><pages>337-349</pages><issn>0889-3241</issn><eissn>1944-7361</eissn><abstract>The present study addresses the feasibility of reinforced concrete columns totally reinforced with glass fiber-reinforced polymer (GFRP) bars achieving the drift requirements specified in various codes. Eleven full-scale concrete columns--two reinforced with steel bars (as reference specimen) and nine totally reinforced with GFRP bars--were constructed and tested to failure under quasi-static reversed cyclic lateral loading and simultaneously subjected to constant compression axial load. The reported test results clearly show that properly designed and detailed GFRP-reinforced concrete columns could reach high deformation levels with no strength degradation. The results also show that the achieved drift satisfies the limitation in most building codes. Acceptable levels of energy dissipation and ductility parameters, compared to the steel-reinforced columns, were observed. The promising results can provide impetus for constructing concrete columns reinforced with GFRP and constitute a step toward using GFRP reinforcement in lateral-resisting systems such as reinforced concrete frames. Keywords: concrete columns; ductility parameters; energy dissipation; glass fiber-reinforced polymer (GFRP) bars; hysteretic response.</abstract><cop>Farmington Hills</cop><pub>American Concrete Institute</pub><doi>10.14359/51700985</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0889-3241
ispartof ACI structural journal, 2018-03, Vol.115 (2), p.337-349
issn 0889-3241
1944-7361
language eng
recordid cdi_proquest_journals_2011217853
source American Concrete Institute Online Journal Archives
subjects Analysis
Axial loads
Bars
Building codes
Compression tests
Concrete
Concrete columns
Concrete construction
Construction
Cyclic loads
Deformation
Design
Design and construction
Drift
Ductility
Earthquakes
Energy dissipation
Feasibility studies
Fiber reinforced concretes
Fiber reinforced polymers
Glass fiber reinforced plastics
Glass reinforced plastics
Lateral loads
Load
Materials
Materials fatigue
Polymers
Properties
Ratios
Reinforced concrete
Reinforcing steels
Steel columns
Stresses (Materials)
title Experimental Behavior of Glass Fiber-Reinforced Polymer-Reinforced Concrete Columns under Lateral Cyclic Load
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T08%3A03%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Behavior%20of%20Glass%20Fiber-Reinforced%20Polymer-Reinforced%20Concrete%20Columns%20under%20Lateral%20Cyclic%20Load&rft.jtitle=ACI%20structural%20journal&rft.au=Elshamandy,%20Mohammed%20G.&rft.date=2018-03-01&rft.volume=115&rft.issue=2&rft.spage=337&rft.epage=349&rft.pages=337-349&rft.issn=0889-3241&rft.eissn=1944-7361&rft_id=info:doi/10.14359/51700985&rft_dat=%3Cgale_proqu%3EA558678980%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2011217853&rft_id=info:pmid/&rft_galeid=A558678980&rfr_iscdi=true