Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice
There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The c...
Gespeichert in:
Veröffentlicht in: | Journal of food science 2018-03, Vol.83 (3), p.864-873 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 873 |
---|---|
container_issue | 3 |
container_start_page | 864 |
container_title | Journal of food science |
container_volume | 83 |
creator | Wang, Li Zeng, Benhua Liu, Zhiwei Liao, Zhenlin Zhong, Qingping Gu, Lihui Wei, Hong Fang, Xiang |
description | There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P < 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P < 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P < 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice.
Practical Application
A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases. |
doi_str_mv | 10.1111/1750-3841.14058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010996148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010996148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</originalsourceid><addsrcrecordid>eNqFkMFOwjAYgBujEUTP3kwTz4O260Z3JCCggWginpuu-yclY8V2aLj5CD6jT-ImyNVemjZfvz_9ELqmpEvr1aP9iASh4LRLOYnECWofb05RmxDGAkp5v4UuvF-R5hzG56jFEs76nEdtVE0cQIkXoPCTLXabJZS28Hhus22hKsBDW9jSaDw32tnU2ErhkXkH5021w6rM8MxsTIbnUKnUFsavsSnx1Lwuvz-_xqqqYajwwkHtyvB0PGhEcInOclV4uDrsHfQyvlsMp8HscXI_HMwCzfuJCCBSHOKUxURrTZNUg4A8SXnEleJEMIhYHuac5yQRuQJNgAoeJlrnjIYihrCDbvfejbNvW_CVXNmtK-uRkhFKkiSmXNRUb0_VP_TeQS43zqyV20lKZFNZNk1l01T-Vq5f3By823QN2ZH_y1oD8R74MAXs_vPJh_HoeW_-AfWWh50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010996148</pqid></control><display><type>article</type><title>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Li ; Zeng, Benhua ; Liu, Zhiwei ; Liao, Zhenlin ; Zhong, Qingping ; Gu, Lihui ; Wei, Hong ; Fang, Xiang</creator><creatorcontrib>Wang, Li ; Zeng, Benhua ; Liu, Zhiwei ; Liao, Zhenlin ; Zhong, Qingping ; Gu, Lihui ; Wei, Hong ; Fang, Xiang</creatorcontrib><description>There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P < 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P < 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P < 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice.
Practical Application
A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.14058</identifier><identifier>PMID: 29427445</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>454 pyrosequencing technology ; Acetic acid ; Animals ; Blood Glucose - metabolism ; Body weight ; Butyric acid ; Cholesterol ; Cholesterol - blood ; Colon - drug effects ; Colon - microbiology ; Diet ; Diet, High-Fat - adverse effects ; Digestive system ; DNA, Bacterial - genetics ; Dose-Response Relationship, Drug ; Fat metabolism ; Fatty Acids, Volatile - metabolism ; Feces - chemistry ; Female ; Flora ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal tract ; Gel electrophoresis ; Green tea ; gut microbiota ; HFA mice ; High fat diet ; Hyperlipidemia ; Insulin ; Intestinal microflora ; Intestine ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipids ; Liver - drug effects ; Liver - metabolism ; Male ; Metabolic disorders ; Metabolism ; Mice ; Mice, Inbred C57BL ; Microbiota ; Microorganisms ; Models, Animal ; Obesity ; Organ Size - drug effects ; Polymerase chain reaction ; Polyphenols ; Polyphenols - pharmacology ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sequence Analysis, DNA ; Tea ; Tea - chemistry ; tea polyphenol ; Triglycerides - blood</subject><ispartof>Journal of food science, 2018-03, Vol.83 (3), p.864-873</ispartof><rights>2018 Institute of Food Technologists</rights><rights>2018 Institute of Food Technologists®.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</citedby><cites>FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</cites><orcidid>0000-0003-2466-2984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.14058$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.14058$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29427445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zeng, Benhua</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Liao, Zhenlin</creatorcontrib><creatorcontrib>Zhong, Qingping</creatorcontrib><creatorcontrib>Gu, Lihui</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><title>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P < 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P < 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P < 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice.
Practical Application
A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.</description><subject>454 pyrosequencing technology</subject><subject>Acetic acid</subject><subject>Animals</subject><subject>Blood Glucose - metabolism</subject><subject>Body weight</subject><subject>Butyric acid</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Colon - drug effects</subject><subject>Colon - microbiology</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Digestive system</subject><subject>DNA, Bacterial - genetics</subject><subject>Dose-Response Relationship, Drug</subject><subject>Fat metabolism</subject><subject>Fatty Acids, Volatile - metabolism</subject><subject>Feces - chemistry</subject><subject>Female</subject><subject>Flora</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal tract</subject><subject>Gel electrophoresis</subject><subject>Green tea</subject><subject>gut microbiota</subject><subject>HFA mice</subject><subject>High fat diet</subject><subject>Hyperlipidemia</subject><subject>Insulin</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Models, Animal</subject><subject>Obesity</subject><subject>Organ Size - drug effects</subject><subject>Polymerase chain reaction</subject><subject>Polyphenols</subject><subject>Polyphenols - pharmacology</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sequence Analysis, DNA</subject><subject>Tea</subject><subject>Tea - chemistry</subject><subject>tea polyphenol</subject><subject>Triglycerides - blood</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFOwjAYgBujEUTP3kwTz4O260Z3JCCggWginpuu-yclY8V2aLj5CD6jT-ImyNVemjZfvz_9ELqmpEvr1aP9iASh4LRLOYnECWofb05RmxDGAkp5v4UuvF-R5hzG56jFEs76nEdtVE0cQIkXoPCTLXabJZS28Hhus22hKsBDW9jSaDw32tnU2ErhkXkH5021w6rM8MxsTIbnUKnUFsavsSnx1Lwuvz-_xqqqYajwwkHtyvB0PGhEcInOclV4uDrsHfQyvlsMp8HscXI_HMwCzfuJCCBSHOKUxURrTZNUg4A8SXnEleJEMIhYHuac5yQRuQJNgAoeJlrnjIYihrCDbvfejbNvW_CVXNmtK-uRkhFKkiSmXNRUb0_VP_TeQS43zqyV20lKZFNZNk1l01T-Vq5f3By823QN2ZH_y1oD8R74MAXs_vPJh_HoeW_-AfWWh50</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Wang, Li</creator><creator>Zeng, Benhua</creator><creator>Liu, Zhiwei</creator><creator>Liao, Zhenlin</creator><creator>Zhong, Qingping</creator><creator>Gu, Lihui</creator><creator>Wei, Hong</creator><creator>Fang, Xiang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2466-2984</orcidid></search><sort><creationdate>201803</creationdate><title>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</title><author>Wang, Li ; Zeng, Benhua ; Liu, Zhiwei ; Liao, Zhenlin ; Zhong, Qingping ; Gu, Lihui ; Wei, Hong ; Fang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>454 pyrosequencing technology</topic><topic>Acetic acid</topic><topic>Animals</topic><topic>Blood Glucose - metabolism</topic><topic>Body weight</topic><topic>Butyric acid</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Colon - drug effects</topic><topic>Colon - microbiology</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Digestive system</topic><topic>DNA, Bacterial - genetics</topic><topic>Dose-Response Relationship, Drug</topic><topic>Fat metabolism</topic><topic>Fatty Acids, Volatile - metabolism</topic><topic>Feces - chemistry</topic><topic>Female</topic><topic>Flora</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal tract</topic><topic>Gel electrophoresis</topic><topic>Green tea</topic><topic>gut microbiota</topic><topic>HFA mice</topic><topic>High fat diet</topic><topic>Hyperlipidemia</topic><topic>Insulin</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Models, Animal</topic><topic>Obesity</topic><topic>Organ Size - drug effects</topic><topic>Polymerase chain reaction</topic><topic>Polyphenols</topic><topic>Polyphenols - pharmacology</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sequence Analysis, DNA</topic><topic>Tea</topic><topic>Tea - chemistry</topic><topic>tea polyphenol</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zeng, Benhua</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Liao, Zhenlin</creatorcontrib><creatorcontrib>Zhong, Qingping</creatorcontrib><creatorcontrib>Gu, Lihui</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li</au><au>Zeng, Benhua</au><au>Liu, Zhiwei</au><au>Liao, Zhenlin</au><au>Zhong, Qingping</au><au>Gu, Lihui</au><au>Wei, Hong</au><au>Fang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2018-03</date><risdate>2018</risdate><volume>83</volume><issue>3</issue><spage>864</spage><epage>873</epage><pages>864-873</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><abstract>There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P < 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P < 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P < 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice.
Practical Application
A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29427445</pmid><doi>10.1111/1750-3841.14058</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2466-2984</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1147 |
ispartof | Journal of food science, 2018-03, Vol.83 (3), p.864-873 |
issn | 0022-1147 1750-3841 |
language | eng |
recordid | cdi_proquest_journals_2010996148 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | 454 pyrosequencing technology Acetic acid Animals Blood Glucose - metabolism Body weight Butyric acid Cholesterol Cholesterol - blood Colon - drug effects Colon - microbiology Diet Diet, High-Fat - adverse effects Digestive system DNA, Bacterial - genetics Dose-Response Relationship, Drug Fat metabolism Fatty Acids, Volatile - metabolism Feces - chemistry Female Flora Gastrointestinal Microbiome - drug effects Gastrointestinal tract Gel electrophoresis Green tea gut microbiota HFA mice High fat diet Hyperlipidemia Insulin Intestinal microflora Intestine Lipid metabolism Lipid Metabolism - drug effects Lipids Liver - drug effects Liver - metabolism Male Metabolic disorders Metabolism Mice Mice, Inbred C57BL Microbiota Microorganisms Models, Animal Obesity Organ Size - drug effects Polymerase chain reaction Polyphenols Polyphenols - pharmacology RNA, Ribosomal, 16S - genetics rRNA 16S Sequence Analysis, DNA Tea Tea - chemistry tea polyphenol Triglycerides - blood |
title | Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20Tea%20Polyphenols%20Modulate%20Colonic%20Microbiota%20Diversity%20and%20Lipid%20Metabolism%20in%20High%E2%80%90Fat%20Diet%20Treated%20HFA%20Mice&rft.jtitle=Journal%20of%20food%20science&rft.au=Wang,%20Li&rft.date=2018-03&rft.volume=83&rft.issue=3&rft.spage=864&rft.epage=873&rft.pages=864-873&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.14058&rft_dat=%3Cproquest_cross%3E2010996148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010996148&rft_id=info:pmid/29427445&rfr_iscdi=true |