Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice

There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of food science 2018-03, Vol.83 (3), p.864-873
Hauptverfasser: Wang, Li, Zeng, Benhua, Liu, Zhiwei, Liao, Zhenlin, Zhong, Qingping, Gu, Lihui, Wei, Hong, Fang, Xiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 873
container_issue 3
container_start_page 864
container_title Journal of food science
container_volume 83
creator Wang, Li
Zeng, Benhua
Liu, Zhiwei
Liao, Zhenlin
Zhong, Qingping
Gu, Lihui
Wei, Hong
Fang, Xiang
description There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P < 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P < 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P < 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice. Practical Application A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.
doi_str_mv 10.1111/1750-3841.14058
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010996148</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010996148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</originalsourceid><addsrcrecordid>eNqFkMFOwjAYgBujEUTP3kwTz4O260Z3JCCggWginpuu-yclY8V2aLj5CD6jT-ImyNVemjZfvz_9ELqmpEvr1aP9iASh4LRLOYnECWofb05RmxDGAkp5v4UuvF-R5hzG56jFEs76nEdtVE0cQIkXoPCTLXabJZS28Hhus22hKsBDW9jSaDw32tnU2ErhkXkH5021w6rM8MxsTIbnUKnUFsavsSnx1Lwuvz-_xqqqYajwwkHtyvB0PGhEcInOclV4uDrsHfQyvlsMp8HscXI_HMwCzfuJCCBSHOKUxURrTZNUg4A8SXnEleJEMIhYHuac5yQRuQJNgAoeJlrnjIYihrCDbvfejbNvW_CVXNmtK-uRkhFKkiSmXNRUb0_VP_TeQS43zqyV20lKZFNZNk1l01T-Vq5f3By823QN2ZH_y1oD8R74MAXs_vPJh_HoeW_-AfWWh50</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010996148</pqid></control><display><type>article</type><title>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Wang, Li ; Zeng, Benhua ; Liu, Zhiwei ; Liao, Zhenlin ; Zhong, Qingping ; Gu, Lihui ; Wei, Hong ; Fang, Xiang</creator><creatorcontrib>Wang, Li ; Zeng, Benhua ; Liu, Zhiwei ; Liao, Zhenlin ; Zhong, Qingping ; Gu, Lihui ; Wei, Hong ; Fang, Xiang</creatorcontrib><description>There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P &lt; 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P &lt; 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P &lt; 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice. Practical Application A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.</description><identifier>ISSN: 0022-1147</identifier><identifier>EISSN: 1750-3841</identifier><identifier>DOI: 10.1111/1750-3841.14058</identifier><identifier>PMID: 29427445</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>454 pyrosequencing technology ; Acetic acid ; Animals ; Blood Glucose - metabolism ; Body weight ; Butyric acid ; Cholesterol ; Cholesterol - blood ; Colon - drug effects ; Colon - microbiology ; Diet ; Diet, High-Fat - adverse effects ; Digestive system ; DNA, Bacterial - genetics ; Dose-Response Relationship, Drug ; Fat metabolism ; Fatty Acids, Volatile - metabolism ; Feces - chemistry ; Female ; Flora ; Gastrointestinal Microbiome - drug effects ; Gastrointestinal tract ; Gel electrophoresis ; Green tea ; gut microbiota ; HFA mice ; High fat diet ; Hyperlipidemia ; Insulin ; Intestinal microflora ; Intestine ; Lipid metabolism ; Lipid Metabolism - drug effects ; Lipids ; Liver - drug effects ; Liver - metabolism ; Male ; Metabolic disorders ; Metabolism ; Mice ; Mice, Inbred C57BL ; Microbiota ; Microorganisms ; Models, Animal ; Obesity ; Organ Size - drug effects ; Polymerase chain reaction ; Polyphenols ; Polyphenols - pharmacology ; RNA, Ribosomal, 16S - genetics ; rRNA 16S ; Sequence Analysis, DNA ; Tea ; Tea - chemistry ; tea polyphenol ; Triglycerides - blood</subject><ispartof>Journal of food science, 2018-03, Vol.83 (3), p.864-873</ispartof><rights>2018 Institute of Food Technologists</rights><rights>2018 Institute of Food Technologists®.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</citedby><cites>FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</cites><orcidid>0000-0003-2466-2984</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1750-3841.14058$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1750-3841.14058$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29427445$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zeng, Benhua</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Liao, Zhenlin</creatorcontrib><creatorcontrib>Zhong, Qingping</creatorcontrib><creatorcontrib>Gu, Lihui</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><title>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</title><title>Journal of food science</title><addtitle>J Food Sci</addtitle><description>There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P &lt; 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P &lt; 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P &lt; 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice. Practical Application A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.</description><subject>454 pyrosequencing technology</subject><subject>Acetic acid</subject><subject>Animals</subject><subject>Blood Glucose - metabolism</subject><subject>Body weight</subject><subject>Butyric acid</subject><subject>Cholesterol</subject><subject>Cholesterol - blood</subject><subject>Colon - drug effects</subject><subject>Colon - microbiology</subject><subject>Diet</subject><subject>Diet, High-Fat - adverse effects</subject><subject>Digestive system</subject><subject>DNA, Bacterial - genetics</subject><subject>Dose-Response Relationship, Drug</subject><subject>Fat metabolism</subject><subject>Fatty Acids, Volatile - metabolism</subject><subject>Feces - chemistry</subject><subject>Female</subject><subject>Flora</subject><subject>Gastrointestinal Microbiome - drug effects</subject><subject>Gastrointestinal tract</subject><subject>Gel electrophoresis</subject><subject>Green tea</subject><subject>gut microbiota</subject><subject>HFA mice</subject><subject>High fat diet</subject><subject>Hyperlipidemia</subject><subject>Insulin</subject><subject>Intestinal microflora</subject><subject>Intestine</subject><subject>Lipid metabolism</subject><subject>Lipid Metabolism - drug effects</subject><subject>Lipids</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Metabolic disorders</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Models, Animal</subject><subject>Obesity</subject><subject>Organ Size - drug effects</subject><subject>Polymerase chain reaction</subject><subject>Polyphenols</subject><subject>Polyphenols - pharmacology</subject><subject>RNA, Ribosomal, 16S - genetics</subject><subject>rRNA 16S</subject><subject>Sequence Analysis, DNA</subject><subject>Tea</subject><subject>Tea - chemistry</subject><subject>tea polyphenol</subject><subject>Triglycerides - blood</subject><issn>0022-1147</issn><issn>1750-3841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkMFOwjAYgBujEUTP3kwTz4O260Z3JCCggWginpuu-yclY8V2aLj5CD6jT-ImyNVemjZfvz_9ELqmpEvr1aP9iASh4LRLOYnECWofb05RmxDGAkp5v4UuvF-R5hzG56jFEs76nEdtVE0cQIkXoPCTLXabJZS28Hhus22hKsBDW9jSaDw32tnU2ErhkXkH5021w6rM8MxsTIbnUKnUFsavsSnx1Lwuvz-_xqqqYajwwkHtyvB0PGhEcInOclV4uDrsHfQyvlsMp8HscXI_HMwCzfuJCCBSHOKUxURrTZNUg4A8SXnEleJEMIhYHuac5yQRuQJNgAoeJlrnjIYihrCDbvfejbNvW_CVXNmtK-uRkhFKkiSmXNRUb0_VP_TeQS43zqyV20lKZFNZNk1l01T-Vq5f3By823QN2ZH_y1oD8R74MAXs_vPJh_HoeW_-AfWWh50</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Wang, Li</creator><creator>Zeng, Benhua</creator><creator>Liu, Zhiwei</creator><creator>Liao, Zhenlin</creator><creator>Zhong, Qingping</creator><creator>Gu, Lihui</creator><creator>Wei, Hong</creator><creator>Fang, Xiang</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QR</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0003-2466-2984</orcidid></search><sort><creationdate>201803</creationdate><title>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</title><author>Wang, Li ; Zeng, Benhua ; Liu, Zhiwei ; Liao, Zhenlin ; Zhong, Qingping ; Gu, Lihui ; Wei, Hong ; Fang, Xiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4798-e5a4e6b260ccc19bce8ef9b454aa4082e52f3f44f098faec0e18439ccf21386e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>454 pyrosequencing technology</topic><topic>Acetic acid</topic><topic>Animals</topic><topic>Blood Glucose - metabolism</topic><topic>Body weight</topic><topic>Butyric acid</topic><topic>Cholesterol</topic><topic>Cholesterol - blood</topic><topic>Colon - drug effects</topic><topic>Colon - microbiology</topic><topic>Diet</topic><topic>Diet, High-Fat - adverse effects</topic><topic>Digestive system</topic><topic>DNA, Bacterial - genetics</topic><topic>Dose-Response Relationship, Drug</topic><topic>Fat metabolism</topic><topic>Fatty Acids, Volatile - metabolism</topic><topic>Feces - chemistry</topic><topic>Female</topic><topic>Flora</topic><topic>Gastrointestinal Microbiome - drug effects</topic><topic>Gastrointestinal tract</topic><topic>Gel electrophoresis</topic><topic>Green tea</topic><topic>gut microbiota</topic><topic>HFA mice</topic><topic>High fat diet</topic><topic>Hyperlipidemia</topic><topic>Insulin</topic><topic>Intestinal microflora</topic><topic>Intestine</topic><topic>Lipid metabolism</topic><topic>Lipid Metabolism - drug effects</topic><topic>Lipids</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Metabolic disorders</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Models, Animal</topic><topic>Obesity</topic><topic>Organ Size - drug effects</topic><topic>Polymerase chain reaction</topic><topic>Polyphenols</topic><topic>Polyphenols - pharmacology</topic><topic>RNA, Ribosomal, 16S - genetics</topic><topic>rRNA 16S</topic><topic>Sequence Analysis, DNA</topic><topic>Tea</topic><topic>Tea - chemistry</topic><topic>tea polyphenol</topic><topic>Triglycerides - blood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Zeng, Benhua</creatorcontrib><creatorcontrib>Liu, Zhiwei</creatorcontrib><creatorcontrib>Liao, Zhenlin</creatorcontrib><creatorcontrib>Zhong, Qingping</creatorcontrib><creatorcontrib>Gu, Lihui</creatorcontrib><creatorcontrib>Wei, Hong</creatorcontrib><creatorcontrib>Fang, Xiang</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Journal of food science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Li</au><au>Zeng, Benhua</au><au>Liu, Zhiwei</au><au>Liao, Zhenlin</au><au>Zhong, Qingping</au><au>Gu, Lihui</au><au>Wei, Hong</au><au>Fang, Xiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice</atitle><jtitle>Journal of food science</jtitle><addtitle>J Food Sci</addtitle><date>2018-03</date><risdate>2018</risdate><volume>83</volume><issue>3</issue><spage>864</spage><epage>873</epage><pages>864-873</pages><issn>0022-1147</issn><eissn>1750-3841</eissn><abstract>There is an increasing interest in the effect of dietary polyphenols on the intestinal microbiota and the possible associations between this effect and the development of obesity. However, limited information is available on how these polyphenols affect the gut microbiota and lipid metabolism. The co‐action of a high‐fat diet (HFD) and tea polyphenol (TP) on gut microbiota and lipid metabolism using a human flora‐associated (HFA) C57BL/6J mice model is studied. TP reduced serum total cholesterol, triglyceride, low density lipoprotein, glucose (GLU) and insulin (INS) levels of HFD mice in a dose‐dependent manner (P &lt; 0.01). TP also significantly increased acetic acid and butyric acid levels in HFA mice. 16S rRNA V3 region Polymerase Chain Reaction‐Denaturing Gradient Gel Electrophoresis (PCR‐DGGE) profiles showed that HFD mice had significantly reduced microbial diversity. This reduction could be alleviated by TP, with a significant increase in the richness and diversity of colonic microbiota in the high‐fat diet with 0.2% TP (TPM) and high‐fat diet with 0.05% TP (TPL) groups (P &lt; 0.05). 454 pyrosequencing analysis showed that the HFD group had a significant increase in the Bacteroidetes to Firmicutes (F/B) ratio (P &lt; 0.001), which could effectively be reversed by TP. The results showed that the changes in composition and diversity of colonic microbiota by TP administration suppressed the host body weight and blood lipid increase in high‐fat diet HFA mice. Practical Application A high fat diet significantly impacted gut microbiota composition and lipid metabolism in human flora‐associated mice, which were largely ameliorated by tea polyphenol (TP). Therefore, TPs may be effectively used in controlling or treating obesity, hyperlipidemia and other related metabolic diseases.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29427445</pmid><doi>10.1111/1750-3841.14058</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2466-2984</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1147
ispartof Journal of food science, 2018-03, Vol.83 (3), p.864-873
issn 0022-1147
1750-3841
language eng
recordid cdi_proquest_journals_2010996148
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects 454 pyrosequencing technology
Acetic acid
Animals
Blood Glucose - metabolism
Body weight
Butyric acid
Cholesterol
Cholesterol - blood
Colon - drug effects
Colon - microbiology
Diet
Diet, High-Fat - adverse effects
Digestive system
DNA, Bacterial - genetics
Dose-Response Relationship, Drug
Fat metabolism
Fatty Acids, Volatile - metabolism
Feces - chemistry
Female
Flora
Gastrointestinal Microbiome - drug effects
Gastrointestinal tract
Gel electrophoresis
Green tea
gut microbiota
HFA mice
High fat diet
Hyperlipidemia
Insulin
Intestinal microflora
Intestine
Lipid metabolism
Lipid Metabolism - drug effects
Lipids
Liver - drug effects
Liver - metabolism
Male
Metabolic disorders
Metabolism
Mice
Mice, Inbred C57BL
Microbiota
Microorganisms
Models, Animal
Obesity
Organ Size - drug effects
Polymerase chain reaction
Polyphenols
Polyphenols - pharmacology
RNA, Ribosomal, 16S - genetics
rRNA 16S
Sequence Analysis, DNA
Tea
Tea - chemistry
tea polyphenol
Triglycerides - blood
title Green Tea Polyphenols Modulate Colonic Microbiota Diversity and Lipid Metabolism in High‐Fat Diet Treated HFA Mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T21%3A26%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Green%20Tea%20Polyphenols%20Modulate%20Colonic%20Microbiota%20Diversity%20and%20Lipid%20Metabolism%20in%20High%E2%80%90Fat%20Diet%20Treated%20HFA%20Mice&rft.jtitle=Journal%20of%20food%20science&rft.au=Wang,%20Li&rft.date=2018-03&rft.volume=83&rft.issue=3&rft.spage=864&rft.epage=873&rft.pages=864-873&rft.issn=0022-1147&rft.eissn=1750-3841&rft_id=info:doi/10.1111/1750-3841.14058&rft_dat=%3Cproquest_cross%3E2010996148%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010996148&rft_id=info:pmid/29427445&rfr_iscdi=true