A new image encryption algorithm based on heterogeneous chaotic neural network generator and dna encoding
This paper presents a new combined neural network and chaos based pseudo-random sequence generator and a DNA-rules based chaotic encryption algorithm for secure transmission and storage of images. The proposed scheme uses a new heterogeneous chaotic neural network generator controlling the operation...
Gespeichert in:
Veröffentlicht in: | Multimedia tools and applications 2018-10, Vol.77 (19), p.24701-24725 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 24725 |
---|---|
container_issue | 19 |
container_start_page | 24701 |
container_title | Multimedia tools and applications |
container_volume | 77 |
creator | Maddodi, Gururaj Awad, Abir Awad, Dounia Awad, Mirna Lee, Brian |
description | This paper presents a new combined neural network and chaos based pseudo-random sequence generator and a DNA-rules based chaotic encryption algorithm for secure transmission and storage of images. The proposed scheme uses a new heterogeneous chaotic neural network generator controlling the operations of the encryption algorithm: pixel position permutation, DNA-based bit substitution and a new proposed DNA-based bit permutation method. The randomness of the generated chaotic sequence is improved by dynamically updating the control parameters as well as the number of iterations of the chaotic functions in the neural network. Several tests including auto correlation, 0/1 balance and NIST tests are performed to show high degree of randomness of the proposed chaotic generator. Experimental results such as pixel correlation coefficients, entropy, NPCR and UACI etc. as well as security analyses are given to demonstrate the security and efficiency of the proposed chaos based genetic encryption method. |
doi_str_mv | 10.1007/s11042-018-5669-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010930344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010930344</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-4e55761068bd7b6cbac197e9d50a798ef499dd57281cb065d2c7d9ba4ea181d43</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAczST3Ww2x1L8B4IXPYdskm63tklNUkq_vVlW8OTpDTPvvYEfQrdA74FS8ZAAaM0IhZbwppGEnaEZcFERIRicl7lqKRGcwiW6SmlDKTSc1TM0LLB3RzzsdO-w8yae9nkIHuttH-KQ1zvc6eQsLqu1yy6G3nkXDgmbtQ55MCV9iHpbJB9D_MLjOeocItbeYuv1WBrs4PtrdLHS2-RufnWOPp8eP5Yv5O39-XW5eCOm4jKT2nEuGqBN21nRNabTBqRw0nKqhWzdqpbSWi5YC6ajDbfMCCs7XTsNLdi6mqO7qXcfw_fBpaw24RB9eakYBSorWtWjCyaXiSGl6FZqHwuEeFJA1UhUTURVIapGooqVDJsyqXh97-Jf8_-hHwEqekE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010930344</pqid></control><display><type>article</type><title>A new image encryption algorithm based on heterogeneous chaotic neural network generator and dna encoding</title><source>SpringerLink Journals - AutoHoldings</source><creator>Maddodi, Gururaj ; Awad, Abir ; Awad, Dounia ; Awad, Mirna ; Lee, Brian</creator><creatorcontrib>Maddodi, Gururaj ; Awad, Abir ; Awad, Dounia ; Awad, Mirna ; Lee, Brian</creatorcontrib><description>This paper presents a new combined neural network and chaos based pseudo-random sequence generator and a DNA-rules based chaotic encryption algorithm for secure transmission and storage of images. The proposed scheme uses a new heterogeneous chaotic neural network generator controlling the operations of the encryption algorithm: pixel position permutation, DNA-based bit substitution and a new proposed DNA-based bit permutation method. The randomness of the generated chaotic sequence is improved by dynamically updating the control parameters as well as the number of iterations of the chaotic functions in the neural network. Several tests including auto correlation, 0/1 balance and NIST tests are performed to show high degree of randomness of the proposed chaotic generator. Experimental results such as pixel correlation coefficients, entropy, NPCR and UACI etc. as well as security analyses are given to demonstrate the security and efficiency of the proposed chaos based genetic encryption method.</description><identifier>ISSN: 1380-7501</identifier><identifier>EISSN: 1573-7721</identifier><identifier>DOI: 10.1007/s11042-018-5669-2</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Computer Communication Networks ; Computer Science ; Correlation coefficients ; Data Structures and Information Theory ; Deoxyribonucleic acid ; DNA ; Encryption ; Image transmission ; Multimedia Information Systems ; Neural networks ; Permutations ; Pixels ; Randomness ; Security ; Special Purpose and Application-Based Systems</subject><ispartof>Multimedia tools and applications, 2018-10, Vol.77 (19), p.24701-24725</ispartof><rights>The Author(s) 2018</rights><rights>Multimedia Tools and Applications is a copyright of Springer, (2018). All Rights Reserved. © 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-4e55761068bd7b6cbac197e9d50a798ef499dd57281cb065d2c7d9ba4ea181d43</citedby><cites>FETCH-LOGICAL-c359t-4e55761068bd7b6cbac197e9d50a798ef499dd57281cb065d2c7d9ba4ea181d43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11042-018-5669-2$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11042-018-5669-2$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Maddodi, Gururaj</creatorcontrib><creatorcontrib>Awad, Abir</creatorcontrib><creatorcontrib>Awad, Dounia</creatorcontrib><creatorcontrib>Awad, Mirna</creatorcontrib><creatorcontrib>Lee, Brian</creatorcontrib><title>A new image encryption algorithm based on heterogeneous chaotic neural network generator and dna encoding</title><title>Multimedia tools and applications</title><addtitle>Multimed Tools Appl</addtitle><description>This paper presents a new combined neural network and chaos based pseudo-random sequence generator and a DNA-rules based chaotic encryption algorithm for secure transmission and storage of images. The proposed scheme uses a new heterogeneous chaotic neural network generator controlling the operations of the encryption algorithm: pixel position permutation, DNA-based bit substitution and a new proposed DNA-based bit permutation method. The randomness of the generated chaotic sequence is improved by dynamically updating the control parameters as well as the number of iterations of the chaotic functions in the neural network. Several tests including auto correlation, 0/1 balance and NIST tests are performed to show high degree of randomness of the proposed chaotic generator. Experimental results such as pixel correlation coefficients, entropy, NPCR and UACI etc. as well as security analyses are given to demonstrate the security and efficiency of the proposed chaos based genetic encryption method.</description><subject>Algorithms</subject><subject>Computer Communication Networks</subject><subject>Computer Science</subject><subject>Correlation coefficients</subject><subject>Data Structures and Information Theory</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Encryption</subject><subject>Image transmission</subject><subject>Multimedia Information Systems</subject><subject>Neural networks</subject><subject>Permutations</subject><subject>Pixels</subject><subject>Randomness</subject><subject>Security</subject><subject>Special Purpose and Application-Based Systems</subject><issn>1380-7501</issn><issn>1573-7721</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWKsfwFvAczST3Ww2x1L8B4IXPYdskm63tklNUkq_vVlW8OTpDTPvvYEfQrdA74FS8ZAAaM0IhZbwppGEnaEZcFERIRicl7lqKRGcwiW6SmlDKTSc1TM0LLB3RzzsdO-w8yae9nkIHuttH-KQ1zvc6eQsLqu1yy6G3nkXDgmbtQ55MCV9iHpbJB9D_MLjOeocItbeYuv1WBrs4PtrdLHS2-RufnWOPp8eP5Yv5O39-XW5eCOm4jKT2nEuGqBN21nRNabTBqRw0nKqhWzdqpbSWi5YC6ajDbfMCCs7XTsNLdi6mqO7qXcfw_fBpaw24RB9eakYBSorWtWjCyaXiSGl6FZqHwuEeFJA1UhUTURVIapGooqVDJsyqXh97-Jf8_-hHwEqekE</recordid><startdate>20181001</startdate><enddate>20181001</enddate><creator>Maddodi, Gururaj</creator><creator>Awad, Abir</creator><creator>Awad, Dounia</creator><creator>Awad, Mirna</creator><creator>Lee, Brian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20181001</creationdate><title>A new image encryption algorithm based on heterogeneous chaotic neural network generator and dna encoding</title><author>Maddodi, Gururaj ; Awad, Abir ; Awad, Dounia ; Awad, Mirna ; Lee, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-4e55761068bd7b6cbac197e9d50a798ef499dd57281cb065d2c7d9ba4ea181d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Computer Communication Networks</topic><topic>Computer Science</topic><topic>Correlation coefficients</topic><topic>Data Structures and Information Theory</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Encryption</topic><topic>Image transmission</topic><topic>Multimedia Information Systems</topic><topic>Neural networks</topic><topic>Permutations</topic><topic>Pixels</topic><topic>Randomness</topic><topic>Security</topic><topic>Special Purpose and Application-Based Systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maddodi, Gururaj</creatorcontrib><creatorcontrib>Awad, Abir</creatorcontrib><creatorcontrib>Awad, Dounia</creatorcontrib><creatorcontrib>Awad, Mirna</creatorcontrib><creatorcontrib>Lee, Brian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Multimedia tools and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maddodi, Gururaj</au><au>Awad, Abir</au><au>Awad, Dounia</au><au>Awad, Mirna</au><au>Lee, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new image encryption algorithm based on heterogeneous chaotic neural network generator and dna encoding</atitle><jtitle>Multimedia tools and applications</jtitle><stitle>Multimed Tools Appl</stitle><date>2018-10-01</date><risdate>2018</risdate><volume>77</volume><issue>19</issue><spage>24701</spage><epage>24725</epage><pages>24701-24725</pages><issn>1380-7501</issn><eissn>1573-7721</eissn><abstract>This paper presents a new combined neural network and chaos based pseudo-random sequence generator and a DNA-rules based chaotic encryption algorithm for secure transmission and storage of images. The proposed scheme uses a new heterogeneous chaotic neural network generator controlling the operations of the encryption algorithm: pixel position permutation, DNA-based bit substitution and a new proposed DNA-based bit permutation method. The randomness of the generated chaotic sequence is improved by dynamically updating the control parameters as well as the number of iterations of the chaotic functions in the neural network. Several tests including auto correlation, 0/1 balance and NIST tests are performed to show high degree of randomness of the proposed chaotic generator. Experimental results such as pixel correlation coefficients, entropy, NPCR and UACI etc. as well as security analyses are given to demonstrate the security and efficiency of the proposed chaos based genetic encryption method.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11042-018-5669-2</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1380-7501 |
ispartof | Multimedia tools and applications, 2018-10, Vol.77 (19), p.24701-24725 |
issn | 1380-7501 1573-7721 |
language | eng |
recordid | cdi_proquest_journals_2010930344 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Computer Communication Networks Computer Science Correlation coefficients Data Structures and Information Theory Deoxyribonucleic acid DNA Encryption Image transmission Multimedia Information Systems Neural networks Permutations Pixels Randomness Security Special Purpose and Application-Based Systems |
title | A new image encryption algorithm based on heterogeneous chaotic neural network generator and dna encoding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T19%3A49%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20image%20encryption%20algorithm%20based%20on%20heterogeneous%20chaotic%20neural%20network%20generator%20and%20dna%20encoding&rft.jtitle=Multimedia%20tools%20and%20applications&rft.au=Maddodi,%20Gururaj&rft.date=2018-10-01&rft.volume=77&rft.issue=19&rft.spage=24701&rft.epage=24725&rft.pages=24701-24725&rft.issn=1380-7501&rft.eissn=1573-7721&rft_id=info:doi/10.1007/s11042-018-5669-2&rft_dat=%3Cproquest_cross%3E2010930344%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010930344&rft_id=info:pmid/&rfr_iscdi=true |