High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery

NASICON-structure Na3V2(PO4)3 (NVP) is a potential cathode material for sodium ion battery, which is still confronted with low rate performance because of its poor conductivity. To address this problem, high-valance Mo6+ ion was introduced into NVP. The crystal structure, electrochemical performance...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018-01, Vol.6 (4), p.1390-1396
Hauptverfasser: Li, Xiang, Huang, Yangyang, Wang, Jingsong, Lin, Miao, Li, Yuyu, Liu, Yi, Qiu, Yuegang, Fang, Chun, Han, Jiantao, Huang, Yunhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1396
container_issue 4
container_start_page 1390
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Li, Xiang
Huang, Yangyang
Wang, Jingsong
Lin, Miao
Li, Yuyu
Liu, Yi
Qiu, Yuegang
Fang, Chun
Han, Jiantao
Huang, Yunhui
description NASICON-structure Na3V2(PO4)3 (NVP) is a potential cathode material for sodium ion battery, which is still confronted with low rate performance because of its poor conductivity. To address this problem, high-valance Mo6+ ion was introduced into NVP. The crystal structure, electrochemical performances, sodium ion diffusion kinetics and ion transfer mechanism of high valence Mo-doped Na3−5xV2−xMox(PO4)3/C (0 < x < 0.04) were investigated. X-ray diffraction, electron microscopy and XPS data confirmed high purity NASICON phosphate phases. The Na ion diffusion process was identified through CV measurement, which clearly shows rapid sodium ion transportation in the Mo-doped NASICON materials. Moreover, DFT calculations proved that Na ion diffusion is promoted by Mo doping. Benefiting from the superior Na ion kinetics, Na2.9V1.98Mo0.02(PO4)3 exhibited a performance of 90 mA h g−1 at 10C and preserved 83.5% of the original capacity after 500 cycles. Our studies demonstrate that high-valence Mo doped Na3V2(PO4)3/C is a promising cathode material for sodium ion batteries with super-high rate capability and stable cycle life.
doi_str_mv 10.1039/c7ta08970h
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2010903085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010903085</sourcerecordid><originalsourceid>FETCH-LOGICAL-g203t-69cd006c5dde2689067ff1bc8b28e6a1219254ccaced0161d8615f87a07239cb3</originalsourceid><addsrcrecordid>eNo9jjFPwzAUhC0EElXpwi-wxAJD6LPdOPaIKmiRCmUA1urFfmlShbjELlL_PUEgbrlvON0dY5cCbgUoO3VFQjC2gPqEjSTkkBUzq0__2ZhzNolxB4MMgLZ2xNyy2db8C1vqHPGnkPmwJ8-fUb3L65f17EZN5xwjR17_BHtMxLHzPCYsW-Lu6FrK2qYaEFMdPPEq9DwG3xw-eIkpUX-8YGcVtpEmfz5mbw_3r_NltlovHud3q2wrQaVMW-eHVy73nqQ2FnRRVaJ0ppSGNAoprMxnzqEjD0ILb7TIK1MgFFJZV6oxu_rt3ffh80AxbXbh0HfD5EaCAAsKTK6-AaP-VU8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010903085</pqid></control><display><type>article</type><title>High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Li, Xiang ; Huang, Yangyang ; Wang, Jingsong ; Lin, Miao ; Li, Yuyu ; Liu, Yi ; Qiu, Yuegang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</creator><creatorcontrib>Li, Xiang ; Huang, Yangyang ; Wang, Jingsong ; Lin, Miao ; Li, Yuyu ; Liu, Yi ; Qiu, Yuegang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</creatorcontrib><description>NASICON-structure Na3V2(PO4)3 (NVP) is a potential cathode material for sodium ion battery, which is still confronted with low rate performance because of its poor conductivity. To address this problem, high-valance Mo6+ ion was introduced into NVP. The crystal structure, electrochemical performances, sodium ion diffusion kinetics and ion transfer mechanism of high valence Mo-doped Na3−5xV2−xMox(PO4)3/C (0 &lt; x &lt; 0.04) were investigated. X-ray diffraction, electron microscopy and XPS data confirmed high purity NASICON phosphate phases. The Na ion diffusion process was identified through CV measurement, which clearly shows rapid sodium ion transportation in the Mo-doped NASICON materials. Moreover, DFT calculations proved that Na ion diffusion is promoted by Mo doping. Benefiting from the superior Na ion kinetics, Na2.9V1.98Mo0.02(PO4)3 exhibited a performance of 90 mA h g−1 at 10C and preserved 83.5% of the original capacity after 500 cycles. Our studies demonstrate that high-valence Mo doped Na3V2(PO4)3/C is a promising cathode material for sodium ion batteries with super-high rate capability and stable cycle life.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta08970h</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Batteries ; Cathodes ; Crystal structure ; Diffusion ; Electrochemistry ; Electrode materials ; Electron microscopy ; Ion diffusion ; Kinetics ; Sodium ; Sodium-ion batteries ; Transportation ; X-ray diffraction</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018-01, Vol.6 (4), p.1390-1396</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Huang, Yangyang</creatorcontrib><creatorcontrib>Wang, Jingsong</creatorcontrib><creatorcontrib>Lin, Miao</creatorcontrib><creatorcontrib>Li, Yuyu</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><title>High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>NASICON-structure Na3V2(PO4)3 (NVP) is a potential cathode material for sodium ion battery, which is still confronted with low rate performance because of its poor conductivity. To address this problem, high-valance Mo6+ ion was introduced into NVP. The crystal structure, electrochemical performances, sodium ion diffusion kinetics and ion transfer mechanism of high valence Mo-doped Na3−5xV2−xMox(PO4)3/C (0 &lt; x &lt; 0.04) were investigated. X-ray diffraction, electron microscopy and XPS data confirmed high purity NASICON phosphate phases. The Na ion diffusion process was identified through CV measurement, which clearly shows rapid sodium ion transportation in the Mo-doped NASICON materials. Moreover, DFT calculations proved that Na ion diffusion is promoted by Mo doping. Benefiting from the superior Na ion kinetics, Na2.9V1.98Mo0.02(PO4)3 exhibited a performance of 90 mA h g−1 at 10C and preserved 83.5% of the original capacity after 500 cycles. Our studies demonstrate that high-valence Mo doped Na3V2(PO4)3/C is a promising cathode material for sodium ion batteries with super-high rate capability and stable cycle life.</description><subject>Batteries</subject><subject>Cathodes</subject><subject>Crystal structure</subject><subject>Diffusion</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Electron microscopy</subject><subject>Ion diffusion</subject><subject>Kinetics</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Transportation</subject><subject>X-ray diffraction</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9jjFPwzAUhC0EElXpwi-wxAJD6LPdOPaIKmiRCmUA1urFfmlShbjELlL_PUEgbrlvON0dY5cCbgUoO3VFQjC2gPqEjSTkkBUzq0__2ZhzNolxB4MMgLZ2xNyy2db8C1vqHPGnkPmwJ8-fUb3L65f17EZN5xwjR17_BHtMxLHzPCYsW-Lu6FrK2qYaEFMdPPEq9DwG3xw-eIkpUX-8YGcVtpEmfz5mbw_3r_NltlovHud3q2wrQaVMW-eHVy73nqQ2FnRRVaJ0ppSGNAoprMxnzqEjD0ILb7TIK1MgFFJZV6oxu_rt3ffh80AxbXbh0HfD5EaCAAsKTK6-AaP-VU8</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Li, Xiang</creator><creator>Huang, Yangyang</creator><creator>Wang, Jingsong</creator><creator>Lin, Miao</creator><creator>Li, Yuyu</creator><creator>Liu, Yi</creator><creator>Qiu, Yuegang</creator><creator>Fang, Chun</creator><creator>Han, Jiantao</creator><creator>Huang, Yunhui</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20180101</creationdate><title>High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery</title><author>Li, Xiang ; Huang, Yangyang ; Wang, Jingsong ; Lin, Miao ; Li, Yuyu ; Liu, Yi ; Qiu, Yuegang ; Fang, Chun ; Han, Jiantao ; Huang, Yunhui</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g203t-69cd006c5dde2689067ff1bc8b28e6a1219254ccaced0161d8615f87a07239cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Cathodes</topic><topic>Crystal structure</topic><topic>Diffusion</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Electron microscopy</topic><topic>Ion diffusion</topic><topic>Kinetics</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Transportation</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Huang, Yangyang</creatorcontrib><creatorcontrib>Wang, Jingsong</creatorcontrib><creatorcontrib>Lin, Miao</creatorcontrib><creatorcontrib>Li, Yuyu</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Qiu, Yuegang</creatorcontrib><creatorcontrib>Fang, Chun</creatorcontrib><creatorcontrib>Han, Jiantao</creatorcontrib><creatorcontrib>Huang, Yunhui</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiang</au><au>Huang, Yangyang</au><au>Wang, Jingsong</au><au>Lin, Miao</au><au>Li, Yuyu</au><au>Liu, Yi</au><au>Qiu, Yuegang</au><au>Fang, Chun</au><au>Han, Jiantao</au><au>Huang, Yunhui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>6</volume><issue>4</issue><spage>1390</spage><epage>1396</epage><pages>1390-1396</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>NASICON-structure Na3V2(PO4)3 (NVP) is a potential cathode material for sodium ion battery, which is still confronted with low rate performance because of its poor conductivity. To address this problem, high-valance Mo6+ ion was introduced into NVP. The crystal structure, electrochemical performances, sodium ion diffusion kinetics and ion transfer mechanism of high valence Mo-doped Na3−5xV2−xMox(PO4)3/C (0 &lt; x &lt; 0.04) were investigated. X-ray diffraction, electron microscopy and XPS data confirmed high purity NASICON phosphate phases. The Na ion diffusion process was identified through CV measurement, which clearly shows rapid sodium ion transportation in the Mo-doped NASICON materials. Moreover, DFT calculations proved that Na ion diffusion is promoted by Mo doping. Benefiting from the superior Na ion kinetics, Na2.9V1.98Mo0.02(PO4)3 exhibited a performance of 90 mA h g−1 at 10C and preserved 83.5% of the original capacity after 500 cycles. Our studies demonstrate that high-valence Mo doped Na3V2(PO4)3/C is a promising cathode material for sodium ion batteries with super-high rate capability and stable cycle life.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta08970h</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018-01, Vol.6 (4), p.1390-1396
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2010903085
source Royal Society Of Chemistry Journals 2008-
subjects Batteries
Cathodes
Crystal structure
Diffusion
Electrochemistry
Electrode materials
Electron microscopy
Ion diffusion
Kinetics
Sodium
Sodium-ion batteries
Transportation
X-ray diffraction
title High valence Mo-doped Na3V2(PO4)3/C as a high rate and stable cycle-life cathode for sodium battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20valence%20Mo-doped%20Na3V2(PO4)3/C%20as%20a%20high%20rate%20and%20stable%20cycle-life%20cathode%20for%20sodium%20battery&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Li,%20Xiang&rft.date=2018-01-01&rft.volume=6&rft.issue=4&rft.spage=1390&rft.epage=1396&rft.pages=1390-1396&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta08970h&rft_dat=%3Cproquest%3E2010903085%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010903085&rft_id=info:pmid/&rfr_iscdi=true