Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries

This paper reports unique highly porous carbon-coated Si nanoparticles with canyon-like surfaces (cpSi@C) prepared by pseudomorphic transformation of wrinkled silica nanoparticles (WSNs) via magnesiothermic reduction and subsequent pyrolytic deposition of carbon. The pseudomorphic transformation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (7), p.3028-3037
Hauptverfasser: Kim, Bokyung, Ahn, Jihoon, Oh, Yunjung, Tan, Jeiwan, Lee, Daehee, Lee, Jin-Kyu, Moon, Jooho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3037
container_issue 7
container_start_page 3028
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 6
creator Kim, Bokyung
Ahn, Jihoon
Oh, Yunjung
Tan, Jeiwan
Lee, Daehee
Lee, Jin-Kyu
Moon, Jooho
description This paper reports unique highly porous carbon-coated Si nanoparticles with canyon-like surfaces (cpSi@C) prepared by pseudomorphic transformation of wrinkled silica nanoparticles (WSNs) via magnesiothermic reduction and subsequent pyrolytic deposition of carbon. The pseudomorphic transformation of soft-template-based WSNs with large pore dimensions provides Si nanoparticles with additional porosity owing to their unique canyon-like surface structure. This degree of porosity is not achievable using conventional soft-template-derived porous SiO 2 materials owing to their smaller pore dimensions. The free volume space in the cpSi@C particles is 419% of their Si volume, which is sufficient to fully accommodate Si volume expansion during cycling. Furthermore, the conformal carbon coating allows cpSi@C to enhance its electrical conductivity. cpSi@C exhibits a high specific charge capacity of 822 mA h g −1 after 200 cycles at a current density of 0.5 A g −1 , which is 59.1% of the initial charge capacity. A comparative study with respect to other porous Si-based materials clearly revealed that the unique canyon-like structure synthesized in this study, with its additional pore volume and smaller Si dimensions, exhibits enhanced electrochemical performance.
doi_str_mv 10.1039/C7TA10093K
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010902986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010902986</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-b59cb1b08e7e2d67043775591af6c0c65df3b6f32fdf6865ed187e74048a28c33</originalsourceid><addsrcrecordid>eNpFkN9LwzAQx4MoOOZe_AsCvgnVS9Pmx-MY6sSCL_O5pGniMrumJi2yP8D_24yJHgd3fO97n4ND6JrAHQEq71d8syQAkr6coVkOJWS8kOz8rxfiEi1i3EEKAcCknKHvtXvfdgc8-OCniLUKje8z7dVoWhxd57Tvca96P6gwOt2ZiL_cuE3G_pCMnfswOE7BKp0mKiXeJmA2mGB92KteG5yWW4P3iRic6nDSceUyl7iNGo-iiVfowqoumsVvnaO3x4fNap1Vr0_Pq2WV6byUY9aUUjekAWG4yVvGoaCcl6UkyjINmpWtpQ2zNLetZYKVpiWCG15AIVQuNKVzdHPiDsF_TiaO9c5PoU8n6xwISMilYMl1e3Lp4GMMxtZDcHsVDjWB-vjp-v_T9AdNpnI-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010902986</pqid></control><display><type>article</type><title>Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Kim, Bokyung ; Ahn, Jihoon ; Oh, Yunjung ; Tan, Jeiwan ; Lee, Daehee ; Lee, Jin-Kyu ; Moon, Jooho</creator><creatorcontrib>Kim, Bokyung ; Ahn, Jihoon ; Oh, Yunjung ; Tan, Jeiwan ; Lee, Daehee ; Lee, Jin-Kyu ; Moon, Jooho</creatorcontrib><description>This paper reports unique highly porous carbon-coated Si nanoparticles with canyon-like surfaces (cpSi@C) prepared by pseudomorphic transformation of wrinkled silica nanoparticles (WSNs) via magnesiothermic reduction and subsequent pyrolytic deposition of carbon. The pseudomorphic transformation of soft-template-based WSNs with large pore dimensions provides Si nanoparticles with additional porosity owing to their unique canyon-like surface structure. This degree of porosity is not achievable using conventional soft-template-derived porous SiO 2 materials owing to their smaller pore dimensions. The free volume space in the cpSi@C particles is 419% of their Si volume, which is sufficient to fully accommodate Si volume expansion during cycling. Furthermore, the conformal carbon coating allows cpSi@C to enhance its electrical conductivity. cpSi@C exhibits a high specific charge capacity of 822 mA h g −1 after 200 cycles at a current density of 0.5 A g −1 , which is 59.1% of the initial charge capacity. A comparative study with respect to other porous Si-based materials clearly revealed that the unique canyon-like structure synthesized in this study, with its additional pore volume and smaller Si dimensions, exhibits enhanced electrochemical performance.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/C7TA10093K</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Anodes ; Batteries ; Carbon ; Comparative studies ; Electrical conductivity ; Electrical resistivity ; Electrochemical analysis ; Electrochemistry ; Electrode materials ; Lithium-ion batteries ; Nanoparticles ; Porosity ; Porous materials ; Rechargeable batteries ; Silica ; Silicon dioxide ; Surface structure</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (7), p.3028-3037</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-b59cb1b08e7e2d67043775591af6c0c65df3b6f32fdf6865ed187e74048a28c33</citedby><cites>FETCH-LOGICAL-c259t-b59cb1b08e7e2d67043775591af6c0c65df3b6f32fdf6865ed187e74048a28c33</cites><orcidid>0000-0002-4787-910X ; 0000-0002-6954-1476 ; 0000-0003-3627-6765 ; 0000-0001-7725-5085 ; 0000-0002-6685-9999 ; 0000-0003-1411-6381</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,4025,27925,27926,27927</link.rule.ids></links><search><creatorcontrib>Kim, Bokyung</creatorcontrib><creatorcontrib>Ahn, Jihoon</creatorcontrib><creatorcontrib>Oh, Yunjung</creatorcontrib><creatorcontrib>Tan, Jeiwan</creatorcontrib><creatorcontrib>Lee, Daehee</creatorcontrib><creatorcontrib>Lee, Jin-Kyu</creatorcontrib><creatorcontrib>Moon, Jooho</creatorcontrib><title>Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>This paper reports unique highly porous carbon-coated Si nanoparticles with canyon-like surfaces (cpSi@C) prepared by pseudomorphic transformation of wrinkled silica nanoparticles (WSNs) via magnesiothermic reduction and subsequent pyrolytic deposition of carbon. The pseudomorphic transformation of soft-template-based WSNs with large pore dimensions provides Si nanoparticles with additional porosity owing to their unique canyon-like surface structure. This degree of porosity is not achievable using conventional soft-template-derived porous SiO 2 materials owing to their smaller pore dimensions. The free volume space in the cpSi@C particles is 419% of their Si volume, which is sufficient to fully accommodate Si volume expansion during cycling. Furthermore, the conformal carbon coating allows cpSi@C to enhance its electrical conductivity. cpSi@C exhibits a high specific charge capacity of 822 mA h g −1 after 200 cycles at a current density of 0.5 A g −1 , which is 59.1% of the initial charge capacity. A comparative study with respect to other porous Si-based materials clearly revealed that the unique canyon-like structure synthesized in this study, with its additional pore volume and smaller Si dimensions, exhibits enhanced electrochemical performance.</description><subject>Anodes</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Comparative studies</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Lithium-ion batteries</subject><subject>Nanoparticles</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Rechargeable batteries</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Surface structure</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpFkN9LwzAQx4MoOOZe_AsCvgnVS9Pmx-MY6sSCL_O5pGniMrumJi2yP8D_24yJHgd3fO97n4ND6JrAHQEq71d8syQAkr6coVkOJWS8kOz8rxfiEi1i3EEKAcCknKHvtXvfdgc8-OCniLUKje8z7dVoWhxd57Tvca96P6gwOt2ZiL_cuE3G_pCMnfswOE7BKp0mKiXeJmA2mGB92KteG5yWW4P3iRic6nDSceUyl7iNGo-iiVfowqoumsVvnaO3x4fNap1Vr0_Pq2WV6byUY9aUUjekAWG4yVvGoaCcl6UkyjINmpWtpQ2zNLetZYKVpiWCG15AIVQuNKVzdHPiDsF_TiaO9c5PoU8n6xwISMilYMl1e3Lp4GMMxtZDcHsVDjWB-vjp-v_T9AdNpnI-</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Kim, Bokyung</creator><creator>Ahn, Jihoon</creator><creator>Oh, Yunjung</creator><creator>Tan, Jeiwan</creator><creator>Lee, Daehee</creator><creator>Lee, Jin-Kyu</creator><creator>Moon, Jooho</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-4787-910X</orcidid><orcidid>https://orcid.org/0000-0002-6954-1476</orcidid><orcidid>https://orcid.org/0000-0003-3627-6765</orcidid><orcidid>https://orcid.org/0000-0001-7725-5085</orcidid><orcidid>https://orcid.org/0000-0002-6685-9999</orcidid><orcidid>https://orcid.org/0000-0003-1411-6381</orcidid></search><sort><creationdate>2018</creationdate><title>Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries</title><author>Kim, Bokyung ; Ahn, Jihoon ; Oh, Yunjung ; Tan, Jeiwan ; Lee, Daehee ; Lee, Jin-Kyu ; Moon, Jooho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-b59cb1b08e7e2d67043775591af6c0c65df3b6f32fdf6865ed187e74048a28c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anodes</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Comparative studies</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Lithium-ion batteries</topic><topic>Nanoparticles</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Rechargeable batteries</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Surface structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Bokyung</creatorcontrib><creatorcontrib>Ahn, Jihoon</creatorcontrib><creatorcontrib>Oh, Yunjung</creatorcontrib><creatorcontrib>Tan, Jeiwan</creatorcontrib><creatorcontrib>Lee, Daehee</creatorcontrib><creatorcontrib>Lee, Jin-Kyu</creatorcontrib><creatorcontrib>Moon, Jooho</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Bokyung</au><au>Ahn, Jihoon</au><au>Oh, Yunjung</au><au>Tan, Jeiwan</au><au>Lee, Daehee</au><au>Lee, Jin-Kyu</au><au>Moon, Jooho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2018</date><risdate>2018</risdate><volume>6</volume><issue>7</issue><spage>3028</spage><epage>3037</epage><pages>3028-3037</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>This paper reports unique highly porous carbon-coated Si nanoparticles with canyon-like surfaces (cpSi@C) prepared by pseudomorphic transformation of wrinkled silica nanoparticles (WSNs) via magnesiothermic reduction and subsequent pyrolytic deposition of carbon. The pseudomorphic transformation of soft-template-based WSNs with large pore dimensions provides Si nanoparticles with additional porosity owing to their unique canyon-like surface structure. This degree of porosity is not achievable using conventional soft-template-derived porous SiO 2 materials owing to their smaller pore dimensions. The free volume space in the cpSi@C particles is 419% of their Si volume, which is sufficient to fully accommodate Si volume expansion during cycling. Furthermore, the conformal carbon coating allows cpSi@C to enhance its electrical conductivity. cpSi@C exhibits a high specific charge capacity of 822 mA h g −1 after 200 cycles at a current density of 0.5 A g −1 , which is 59.1% of the initial charge capacity. A comparative study with respect to other porous Si-based materials clearly revealed that the unique canyon-like structure synthesized in this study, with its additional pore volume and smaller Si dimensions, exhibits enhanced electrochemical performance.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7TA10093K</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4787-910X</orcidid><orcidid>https://orcid.org/0000-0002-6954-1476</orcidid><orcidid>https://orcid.org/0000-0003-3627-6765</orcidid><orcidid>https://orcid.org/0000-0001-7725-5085</orcidid><orcidid>https://orcid.org/0000-0002-6685-9999</orcidid><orcidid>https://orcid.org/0000-0003-1411-6381</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2018, Vol.6 (7), p.3028-3037
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2010902986
source Royal Society Of Chemistry Journals 2008-
subjects Anodes
Batteries
Carbon
Comparative studies
Electrical conductivity
Electrical resistivity
Electrochemical analysis
Electrochemistry
Electrode materials
Lithium-ion batteries
Nanoparticles
Porosity
Porous materials
Rechargeable batteries
Silica
Silicon dioxide
Surface structure
title Highly porous carbon-coated silicon nanoparticles with canyon-like surfaces as a high-performance anode material for Li-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A50%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Highly%20porous%20carbon-coated%20silicon%20nanoparticles%20with%20canyon-like%20surfaces%20as%20a%20high-performance%20anode%20material%20for%20Li-ion%20batteries&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Kim,%20Bokyung&rft.date=2018&rft.volume=6&rft.issue=7&rft.spage=3028&rft.epage=3037&rft.pages=3028-3037&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/C7TA10093K&rft_dat=%3Cproquest_cross%3E2010902986%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010902986&rft_id=info:pmid/&rfr_iscdi=true