Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2

A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL). Tin( iv ) isopropoxide dissolved in isopropanol (IPA) was spin-coated on a fluorine-doped tin oxide (FTO) substrate in a nitrogen atmosphere. The effec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (47), p.2479-2483
Hauptverfasser: Jung, Kwang-Ho, Seo, Ja-Young, Lee, Seonhee, Shin, Hyunjung, Park, Nam-Gyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2483
container_issue 47
container_start_page 2479
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 5
creator Jung, Kwang-Ho
Seo, Ja-Young
Lee, Seonhee
Shin, Hyunjung
Park, Nam-Gyu
description A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL). Tin( iv ) isopropoxide dissolved in isopropanol (IPA) was spin-coated on a fluorine-doped tin oxide (FTO) substrate in a nitrogen atmosphere. The effects of annealing temperature and precursor concentration on the photovoltaic performance were systematically investigated. The annealing temperature was scanned from 100 °C to 500 °C, whereby the 250 °C-annealed SnO 2 film demonstrated the best performance along with negligible current-voltage hysteresis. The SnO 2 film annealed at 250 °C was X-ray amorphous, while it was observed to be nanocrystallite from SnO 2 annealed at 500 °C. The faster stabilization of the photocurrent and lower interfacial capacitance for the 250 °C-annealed SnO 2 than for the 500 °C-annealed one were responsible for the markedly reduced hysteresis. The photovoltaic performance and hysteresis were influenced by the precursor concentration, where a concentration of 0.1 M showed hysteresis-free higher performance among the concentrations investigated ranging from 0.05 M to 0.2 M owing to a larger and faster photoluminescence quenching. The planar (HC(NH 2 ) 2 PbI 3 ) 0.875 (CsPbBr 3 ) 0.125 perovskite that was formed on the 40 nm-thick, 0.1 M-based and 250 °C-annealed SnO 2 thin film delivered a power conversion efficiency (PCE) of 19.17% averaged out from the forward scan PCE of 19.40% and the reverse scan PCE of 18.93%. A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL).
doi_str_mv 10.1039/c7ta08040a
format Article
fullrecord <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_journals_2010898987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010898987</sourcerecordid><originalsourceid>FETCH-LOGICAL-g270t-50a13f49d3f1f3d311c26a853f58e73a8fba86488cf1b53fe7a16b1e3f67e79a3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGov3oWI563Jpt0kRyl-QaGH6nlJszM2dbtZk7SlJ_-6AUVvzhxmeHlmXmYIueRszJnQt1YmwxSbMHNCBiWbskJOdHX62yt1TkYxblgOxVil9YB8Ln27S853RR-8hRihoctuUdK0dh1F124p-kANXR9jggDRxQIDAO1b05lAewh-H99dAhp9mwULbUsPLq3zTO8PkBXf7SHE7EEB0VkHnT1Sj5TrcXlBztC0EUY_dUheH-5fZk_FfPH4PLubF2-lZKmYMsMFTnQjkKNoBOe2rIyaCpwqkMIoXBlV5Qst8lVWQRperTgIrCRIbcSQ3HzvzWd-7CCmeuN3ocuWdck4UzqnzNT1NxWirfvgtiYc67-31n2Dmbn6jxFfb9B3iQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010898987</pqid></control><display><type>article</type><title>Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Jung, Kwang-Ho ; Seo, Ja-Young ; Lee, Seonhee ; Shin, Hyunjung ; Park, Nam-Gyu</creator><creatorcontrib>Jung, Kwang-Ho ; Seo, Ja-Young ; Lee, Seonhee ; Shin, Hyunjung ; Park, Nam-Gyu</creatorcontrib><description>A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL). Tin( iv ) isopropoxide dissolved in isopropanol (IPA) was spin-coated on a fluorine-doped tin oxide (FTO) substrate in a nitrogen atmosphere. The effects of annealing temperature and precursor concentration on the photovoltaic performance were systematically investigated. The annealing temperature was scanned from 100 °C to 500 °C, whereby the 250 °C-annealed SnO 2 film demonstrated the best performance along with negligible current-voltage hysteresis. The SnO 2 film annealed at 250 °C was X-ray amorphous, while it was observed to be nanocrystallite from SnO 2 annealed at 500 °C. The faster stabilization of the photocurrent and lower interfacial capacitance for the 250 °C-annealed SnO 2 than for the 500 °C-annealed one were responsible for the markedly reduced hysteresis. The photovoltaic performance and hysteresis were influenced by the precursor concentration, where a concentration of 0.1 M showed hysteresis-free higher performance among the concentrations investigated ranging from 0.05 M to 0.2 M owing to a larger and faster photoluminescence quenching. The planar (HC(NH 2 ) 2 PbI 3 ) 0.875 (CsPbBr 3 ) 0.125 perovskite that was formed on the 40 nm-thick, 0.1 M-based and 250 °C-annealed SnO 2 thin film delivered a power conversion efficiency (PCE) of 19.17% averaged out from the forward scan PCE of 19.40% and the reverse scan PCE of 18.93%. A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL).</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c7ta08040a</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Annealing ; Capacitance ; Efficiency ; Electron transport ; Energy conversion efficiency ; Fluorine ; Hysteresis ; Photoelectric effect ; Photoelectric emission ; Photoluminescence ; Photons ; Photovoltaic cells ; Photovoltaics ; Solar power ; Spin coating ; Substrates ; Temperature ; Thin films ; Tin ; Tin dioxide ; Tin oxide ; Tin oxides</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (47), p.2479-2483</ispartof><rights>Copyright Royal Society of Chemistry 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Jung, Kwang-Ho</creatorcontrib><creatorcontrib>Seo, Ja-Young</creatorcontrib><creatorcontrib>Lee, Seonhee</creatorcontrib><creatorcontrib>Shin, Hyunjung</creatorcontrib><creatorcontrib>Park, Nam-Gyu</creatorcontrib><title>Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL). Tin( iv ) isopropoxide dissolved in isopropanol (IPA) was spin-coated on a fluorine-doped tin oxide (FTO) substrate in a nitrogen atmosphere. The effects of annealing temperature and precursor concentration on the photovoltaic performance were systematically investigated. The annealing temperature was scanned from 100 °C to 500 °C, whereby the 250 °C-annealed SnO 2 film demonstrated the best performance along with negligible current-voltage hysteresis. The SnO 2 film annealed at 250 °C was X-ray amorphous, while it was observed to be nanocrystallite from SnO 2 annealed at 500 °C. The faster stabilization of the photocurrent and lower interfacial capacitance for the 250 °C-annealed SnO 2 than for the 500 °C-annealed one were responsible for the markedly reduced hysteresis. The photovoltaic performance and hysteresis were influenced by the precursor concentration, where a concentration of 0.1 M showed hysteresis-free higher performance among the concentrations investigated ranging from 0.05 M to 0.2 M owing to a larger and faster photoluminescence quenching. The planar (HC(NH 2 ) 2 PbI 3 ) 0.875 (CsPbBr 3 ) 0.125 perovskite that was formed on the 40 nm-thick, 0.1 M-based and 250 °C-annealed SnO 2 thin film delivered a power conversion efficiency (PCE) of 19.17% averaged out from the forward scan PCE of 19.40% and the reverse scan PCE of 18.93%. A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL).</description><subject>Annealing</subject><subject>Capacitance</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Energy conversion efficiency</subject><subject>Fluorine</subject><subject>Hysteresis</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photoluminescence</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Solar power</subject><subject>Spin coating</subject><subject>Substrates</subject><subject>Temperature</subject><subject>Thin films</subject><subject>Tin</subject><subject>Tin dioxide</subject><subject>Tin oxide</subject><subject>Tin oxides</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGov3oWI563Jpt0kRyl-QaGH6nlJszM2dbtZk7SlJ_-6AUVvzhxmeHlmXmYIueRszJnQt1YmwxSbMHNCBiWbskJOdHX62yt1TkYxblgOxVil9YB8Ln27S853RR-8hRihoctuUdK0dh1F124p-kANXR9jggDRxQIDAO1b05lAewh-H99dAhp9mwULbUsPLq3zTO8PkBXf7SHE7EEB0VkHnT1Sj5TrcXlBztC0EUY_dUheH-5fZk_FfPH4PLubF2-lZKmYMsMFTnQjkKNoBOe2rIyaCpwqkMIoXBlV5Qst8lVWQRperTgIrCRIbcSQ3HzvzWd-7CCmeuN3ocuWdck4UzqnzNT1NxWirfvgtiYc67-31n2Dmbn6jxFfb9B3iQ</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Jung, Kwang-Ho</creator><creator>Seo, Ja-Young</creator><creator>Lee, Seonhee</creator><creator>Shin, Hyunjung</creator><creator>Park, Nam-Gyu</creator><general>Royal Society of Chemistry</general><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>2017</creationdate><title>Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2</title><author>Jung, Kwang-Ho ; Seo, Ja-Young ; Lee, Seonhee ; Shin, Hyunjung ; Park, Nam-Gyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g270t-50a13f49d3f1f3d311c26a853f58e73a8fba86488cf1b53fe7a16b1e3f67e79a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Annealing</topic><topic>Capacitance</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Energy conversion efficiency</topic><topic>Fluorine</topic><topic>Hysteresis</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photoluminescence</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Solar power</topic><topic>Spin coating</topic><topic>Substrates</topic><topic>Temperature</topic><topic>Thin films</topic><topic>Tin</topic><topic>Tin dioxide</topic><topic>Tin oxide</topic><topic>Tin oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Kwang-Ho</creatorcontrib><creatorcontrib>Seo, Ja-Young</creatorcontrib><creatorcontrib>Lee, Seonhee</creatorcontrib><creatorcontrib>Shin, Hyunjung</creatorcontrib><creatorcontrib>Park, Nam-Gyu</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Kwang-Ho</au><au>Seo, Ja-Young</au><au>Lee, Seonhee</au><au>Shin, Hyunjung</au><au>Park, Nam-Gyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>47</issue><spage>2479</spage><epage>2483</epage><pages>2479-2483</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL). Tin( iv ) isopropoxide dissolved in isopropanol (IPA) was spin-coated on a fluorine-doped tin oxide (FTO) substrate in a nitrogen atmosphere. The effects of annealing temperature and precursor concentration on the photovoltaic performance were systematically investigated. The annealing temperature was scanned from 100 °C to 500 °C, whereby the 250 °C-annealed SnO 2 film demonstrated the best performance along with negligible current-voltage hysteresis. The SnO 2 film annealed at 250 °C was X-ray amorphous, while it was observed to be nanocrystallite from SnO 2 annealed at 500 °C. The faster stabilization of the photocurrent and lower interfacial capacitance for the 250 °C-annealed SnO 2 than for the 500 °C-annealed one were responsible for the markedly reduced hysteresis. The photovoltaic performance and hysteresis were influenced by the precursor concentration, where a concentration of 0.1 M showed hysteresis-free higher performance among the concentrations investigated ranging from 0.05 M to 0.2 M owing to a larger and faster photoluminescence quenching. The planar (HC(NH 2 ) 2 PbI 3 ) 0.875 (CsPbBr 3 ) 0.125 perovskite that was formed on the 40 nm-thick, 0.1 M-based and 250 °C-annealed SnO 2 thin film delivered a power conversion efficiency (PCE) of 19.17% averaged out from the forward scan PCE of 19.40% and the reverse scan PCE of 18.93%. A hysteresis-free and high-efficiency planar perovskite solar cell was developed using a solution-processed SnO 2 electron-transporting layer (ETL).</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7ta08040a</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (47), p.2479-2483
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2010898987
source Royal Society Of Chemistry Journals 2008-
subjects Annealing
Capacitance
Efficiency
Electron transport
Energy conversion efficiency
Fluorine
Hysteresis
Photoelectric effect
Photoelectric emission
Photoluminescence
Photons
Photovoltaic cells
Photovoltaics
Solar power
Spin coating
Substrates
Temperature
Thin films
Tin
Tin dioxide
Tin oxide
Tin oxides
title Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T08%3A03%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solution-processed%20SnO2%20thin%20film%20for%20a%20hysteresis-free%20planar%20perovskite%20solar%20cell%20with%20a%20power%20conversion%20efficiency%20of%2019.2&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Jung,%20Kwang-Ho&rft.date=2017&rft.volume=5&rft.issue=47&rft.spage=2479&rft.epage=2483&rft.pages=2479-2483&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c7ta08040a&rft_dat=%3Cproquest_rsc_p%3E2010898987%3C/proquest_rsc_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010898987&rft_id=info:pmid/&rfr_iscdi=true