Using DNA strand displacement to control interactions in DNA-grafted colloids

Grafting DNA oligonucleotides to colloidal particles leads to specific, reversible interactions between those particles. However, the interaction strength varies steeply and monotonically with temperature, hindering the use of DNA-mediated interactions in self-assembly. We show how the dependence on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soft matter 2018, Vol.14 (6), p.969-984
Hauptverfasser: Gehrels, Emily W, Rogers, W. Benjamin, Manoharan, Vinothan N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 984
container_issue 6
container_start_page 969
container_title Soft matter
container_volume 14
creator Gehrels, Emily W
Rogers, W. Benjamin
Manoharan, Vinothan N
description Grafting DNA oligonucleotides to colloidal particles leads to specific, reversible interactions between those particles. However, the interaction strength varies steeply and monotonically with temperature, hindering the use of DNA-mediated interactions in self-assembly. We show how the dependence on temperature can be modified in a controlled way by incorporating DNA strand-displacement reactions. The method allows us to make multicomponent systems that can self-assemble over a wide range of temperatures, invert the dependence on temperature to design colloidal systems that melt upon cooling, controllably transition between structures with different compositions, or design systems with multiple melting transitions. This wide range of behaviors can be realized simply by adding a small number of DNA strands to the solution, making the approach modular and straightforward to implement. We conclude with practical considerations for designing systems of DNA-mediated colloidal interactions. A method for creating broadened, inverted, or multiple phase transitions between colloidal particles grafted with DNA.
doi_str_mv 10.1039/c7sm01722g
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_2010897239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010897239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-e511a7552efbd3dd9f2bd2e8579962f5aaac9027852684ac475ac7d389fb8e0a3</originalsourceid><addsrcrecordid>eNpd0ctKAzEUBuAgiveNe2XAjQqjuU6SZalahaoLFdyFNMnUkZlJTVLBtze1WsFVbl8O5_ADcIDgOYJEXhgeO4g4xtM1sI04pWUlqFhf7cnLFtiJ8Q1CIiiqNsEWlgQTIqttcPccm35aXN4PipiC7m1hmzhrtXGd61ORfGF8n4Jvi6ZPLmiTGt_HfFh8KadB18nZbNrWNzbugY1at9Ht_6y74Pn66ml4U44fRrfDwbg0lIpUOoaQ5oxhV08ssVbWeGKxE4xLWeGaaa2NhJgLhvMk2lDOtOGWCFlPhIOa7ILTZd1X3apZaDodPpXXjboZjNXiDlJWYS7pB8r2ZGlnwb_PXUyqa6Jxbat75-dRISkkqypasUyP_9E3Pw99nkRhiKCQHBOZ1dlSmeBjDK5edYCgWgSihvzx7juQUcZHPyXnk87ZFf1NIIPDJQjRrF7_EiVfg9OOGw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010897239</pqid></control><display><type>article</type><title>Using DNA strand displacement to control interactions in DNA-grafted colloids</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Gehrels, Emily W ; Rogers, W. Benjamin ; Manoharan, Vinothan N</creator><creatorcontrib>Gehrels, Emily W ; Rogers, W. Benjamin ; Manoharan, Vinothan N</creatorcontrib><description>Grafting DNA oligonucleotides to colloidal particles leads to specific, reversible interactions between those particles. However, the interaction strength varies steeply and monotonically with temperature, hindering the use of DNA-mediated interactions in self-assembly. We show how the dependence on temperature can be modified in a controlled way by incorporating DNA strand-displacement reactions. The method allows us to make multicomponent systems that can self-assemble over a wide range of temperatures, invert the dependence on temperature to design colloidal systems that melt upon cooling, controllably transition between structures with different compositions, or design systems with multiple melting transitions. This wide range of behaviors can be realized simply by adding a small number of DNA strands to the solution, making the approach modular and straightforward to implement. We conclude with practical considerations for designing systems of DNA-mediated colloidal interactions. A method for creating broadened, inverted, or multiple phase transitions between colloidal particles grafted with DNA.</description><identifier>ISSN: 1744-683X</identifier><identifier>EISSN: 1744-6848</identifier><identifier>DOI: 10.1039/c7sm01722g</identifier><identifier>PMID: 29323396</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Colloids ; Condensed Matter ; Deoxyribonucleic acid ; Design engineering ; DNA ; Oligonucleotides ; Particulates ; Physics ; Self-assembly ; Soft Condensed Matter ; Temperature ; Temperature dependence ; Temperature effects</subject><ispartof>Soft matter, 2018, Vol.14 (6), p.969-984</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-e511a7552efbd3dd9f2bd2e8579962f5aaac9027852684ac475ac7d389fb8e0a3</citedby><cites>FETCH-LOGICAL-c448t-e511a7552efbd3dd9f2bd2e8579962f5aaac9027852684ac475ac7d389fb8e0a3</cites><orcidid>0000-0003-0370-6095 ; 0000-0002-4185-2467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29323396$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04562794$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gehrels, Emily W</creatorcontrib><creatorcontrib>Rogers, W. Benjamin</creatorcontrib><creatorcontrib>Manoharan, Vinothan N</creatorcontrib><title>Using DNA strand displacement to control interactions in DNA-grafted colloids</title><title>Soft matter</title><addtitle>Soft Matter</addtitle><description>Grafting DNA oligonucleotides to colloidal particles leads to specific, reversible interactions between those particles. However, the interaction strength varies steeply and monotonically with temperature, hindering the use of DNA-mediated interactions in self-assembly. We show how the dependence on temperature can be modified in a controlled way by incorporating DNA strand-displacement reactions. The method allows us to make multicomponent systems that can self-assemble over a wide range of temperatures, invert the dependence on temperature to design colloidal systems that melt upon cooling, controllably transition between structures with different compositions, or design systems with multiple melting transitions. This wide range of behaviors can be realized simply by adding a small number of DNA strands to the solution, making the approach modular and straightforward to implement. We conclude with practical considerations for designing systems of DNA-mediated colloidal interactions. A method for creating broadened, inverted, or multiple phase transitions between colloidal particles grafted with DNA.</description><subject>Colloids</subject><subject>Condensed Matter</subject><subject>Deoxyribonucleic acid</subject><subject>Design engineering</subject><subject>DNA</subject><subject>Oligonucleotides</subject><subject>Particulates</subject><subject>Physics</subject><subject>Self-assembly</subject><subject>Soft Condensed Matter</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Temperature effects</subject><issn>1744-683X</issn><issn>1744-6848</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpd0ctKAzEUBuAgiveNe2XAjQqjuU6SZalahaoLFdyFNMnUkZlJTVLBtze1WsFVbl8O5_ADcIDgOYJEXhgeO4g4xtM1sI04pWUlqFhf7cnLFtiJ8Q1CIiiqNsEWlgQTIqttcPccm35aXN4PipiC7m1hmzhrtXGd61ORfGF8n4Jvi6ZPLmiTGt_HfFh8KadB18nZbNrWNzbugY1at9Ht_6y74Pn66ml4U44fRrfDwbg0lIpUOoaQ5oxhV08ssVbWeGKxE4xLWeGaaa2NhJgLhvMk2lDOtOGWCFlPhIOa7ILTZd1X3apZaDodPpXXjboZjNXiDlJWYS7pB8r2ZGlnwb_PXUyqa6Jxbat75-dRISkkqypasUyP_9E3Pw99nkRhiKCQHBOZ1dlSmeBjDK5edYCgWgSihvzx7juQUcZHPyXnk87ZFf1NIIPDJQjRrF7_EiVfg9OOGw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Gehrels, Emily W</creator><creator>Rogers, W. Benjamin</creator><creator>Manoharan, Vinothan N</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-0370-6095</orcidid><orcidid>https://orcid.org/0000-0002-4185-2467</orcidid></search><sort><creationdate>2018</creationdate><title>Using DNA strand displacement to control interactions in DNA-grafted colloids</title><author>Gehrels, Emily W ; Rogers, W. Benjamin ; Manoharan, Vinothan N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-e511a7552efbd3dd9f2bd2e8579962f5aaac9027852684ac475ac7d389fb8e0a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Colloids</topic><topic>Condensed Matter</topic><topic>Deoxyribonucleic acid</topic><topic>Design engineering</topic><topic>DNA</topic><topic>Oligonucleotides</topic><topic>Particulates</topic><topic>Physics</topic><topic>Self-assembly</topic><topic>Soft Condensed Matter</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Temperature effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gehrels, Emily W</creatorcontrib><creatorcontrib>Rogers, W. Benjamin</creatorcontrib><creatorcontrib>Manoharan, Vinothan N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Soft matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gehrels, Emily W</au><au>Rogers, W. Benjamin</au><au>Manoharan, Vinothan N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using DNA strand displacement to control interactions in DNA-grafted colloids</atitle><jtitle>Soft matter</jtitle><addtitle>Soft Matter</addtitle><date>2018</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>969</spage><epage>984</epage><pages>969-984</pages><issn>1744-683X</issn><eissn>1744-6848</eissn><abstract>Grafting DNA oligonucleotides to colloidal particles leads to specific, reversible interactions between those particles. However, the interaction strength varies steeply and monotonically with temperature, hindering the use of DNA-mediated interactions in self-assembly. We show how the dependence on temperature can be modified in a controlled way by incorporating DNA strand-displacement reactions. The method allows us to make multicomponent systems that can self-assemble over a wide range of temperatures, invert the dependence on temperature to design colloidal systems that melt upon cooling, controllably transition between structures with different compositions, or design systems with multiple melting transitions. This wide range of behaviors can be realized simply by adding a small number of DNA strands to the solution, making the approach modular and straightforward to implement. We conclude with practical considerations for designing systems of DNA-mediated colloidal interactions. A method for creating broadened, inverted, or multiple phase transitions between colloidal particles grafted with DNA.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>29323396</pmid><doi>10.1039/c7sm01722g</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0370-6095</orcidid><orcidid>https://orcid.org/0000-0002-4185-2467</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1744-683X
ispartof Soft matter, 2018, Vol.14 (6), p.969-984
issn 1744-683X
1744-6848
language eng
recordid cdi_proquest_journals_2010897239
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Colloids
Condensed Matter
Deoxyribonucleic acid
Design engineering
DNA
Oligonucleotides
Particulates
Physics
Self-assembly
Soft Condensed Matter
Temperature
Temperature dependence
Temperature effects
title Using DNA strand displacement to control interactions in DNA-grafted colloids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T07%3A32%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20DNA%20strand%20displacement%20to%20control%20interactions%20in%20DNA-grafted%20colloids&rft.jtitle=Soft%20matter&rft.au=Gehrels,%20Emily%20W&rft.date=2018&rft.volume=14&rft.issue=6&rft.spage=969&rft.epage=984&rft.pages=969-984&rft.issn=1744-683X&rft.eissn=1744-6848&rft_id=info:doi/10.1039/c7sm01722g&rft_dat=%3Cproquest_hal_p%3E2010897239%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010897239&rft_id=info:pmid/29323396&rfr_iscdi=true