Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution
Transition metal dichalcogenides for electrocatalytic water splitting are important in renewable energy research, with studies showing that the edge structure and specific surface area are crucial to their electrocatalytic activity. Herein, the design and construction of yolk–shell nanospheres based...
Gespeichert in:
Veröffentlicht in: | Sustainable energy & fuels 2018, Vol.2 (2), p.444-454 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 454 |
---|---|
container_issue | 2 |
container_start_page | 444 |
container_title | Sustainable energy & fuels |
container_volume | 2 |
creator | Xia, Xiaohong Wang, Chunming Liu, Lang Du, Yonglin Ye, Weichun |
description | Transition metal dichalcogenides for electrocatalytic water splitting are important in renewable energy research, with studies showing that the edge structure and specific surface area are crucial to their electrocatalytic activity. Herein, the design and construction of yolk–shell nanospheres based on molybdenum diselenide-encapsulated molybdenum oxide are reported. Their structures were characterized using various techniques, which showed that the void space between the interior core and outer shell increased the number of active sites. This yolk–shell structure exhibited enhanced and stable electrocatalytic activity in the hydrogen evolution reaction (HER). The HER current density at −0.5 V
vs.
the reversible hydrogen electrode was increased by 95% (to −256 mA cm
−2
) compared to that of traditional flower-like molybdenum diselenide. The overpotential of this yolk–shell structure, which was required to drive a current density of −10 mA cm
−2
, was 65 mV lower than that of flower-like molybdenum diselenide (286 mV). Furthermore, long-term potential cycling and potentiostatic measurement of this catalyst showed favorable stability and durability of electrocatalytic activity. This yolk–shell structure plays a key role in energy conversion processes central to several renewable energy technologies. |
doi_str_mv | 10.1039/C7SE00466D |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010894206</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010894206</sourcerecordid><originalsourceid>FETCH-LOGICAL-c259t-716185cbbf8a33c6925b474859678523429102b974cdbd77c74af7a76467e34e3</originalsourceid><addsrcrecordid>eNpNkM1KxDAUhYsoOIyz8QkC7oRqmqZJs5Rx_IEBF6PrkqY3TsdMUpNU7M5HEHxDn8TKCM7qHDjfuRdOkpxm-CLDubic89UCY8rY9UEyIbkoUyowOdzzx8kshA3GmGSEkoJPks_VYOMaQhuQ02hw5uX74yuswRgUujV4CKiWARrkLNo6M9QN2H6LmjaAAds2kIJVsgu9kXGk9hD3PqZIO49A61a1YCMaOyp6p2SUZoitQuuh8e4ZLII3Z_rYOnuSHGlpAsz-dJo83Swe53fp8uH2fn61TBUpREx5xrKyUHWtS5nniglS1JTTshCMlwXJKREZJrXgVDV1w7niVGouOaOMQ04hnyZnu7udd689hFhtXO_t-LIiOMOloASzkTrfUcq7EDzoqvPtVvqhynD1O3r1P3r-A0NZeB4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010894206</pqid></control><display><type>article</type><title>Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution</title><source>Royal Society Of Chemistry Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Xia, Xiaohong ; Wang, Chunming ; Liu, Lang ; Du, Yonglin ; Ye, Weichun</creator><creatorcontrib>Xia, Xiaohong ; Wang, Chunming ; Liu, Lang ; Du, Yonglin ; Ye, Weichun</creatorcontrib><description>Transition metal dichalcogenides for electrocatalytic water splitting are important in renewable energy research, with studies showing that the edge structure and specific surface area are crucial to their electrocatalytic activity. Herein, the design and construction of yolk–shell nanospheres based on molybdenum diselenide-encapsulated molybdenum oxide are reported. Their structures were characterized using various techniques, which showed that the void space between the interior core and outer shell increased the number of active sites. This yolk–shell structure exhibited enhanced and stable electrocatalytic activity in the hydrogen evolution reaction (HER). The HER current density at −0.5 V
vs.
the reversible hydrogen electrode was increased by 95% (to −256 mA cm
−2
) compared to that of traditional flower-like molybdenum diselenide. The overpotential of this yolk–shell structure, which was required to drive a current density of −10 mA cm
−2
, was 65 mV lower than that of flower-like molybdenum diselenide (286 mV). Furthermore, long-term potential cycling and potentiostatic measurement of this catalyst showed favorable stability and durability of electrocatalytic activity. This yolk–shell structure plays a key role in energy conversion processes central to several renewable energy technologies.</description><identifier>ISSN: 2398-4902</identifier><identifier>EISSN: 2398-4902</identifier><identifier>DOI: 10.1039/C7SE00466D</identifier><language>eng</language><publisher>London: Royal Society of Chemistry</publisher><subject>Current density ; Durability ; Encapsulation ; Energy ; Energy conversion ; Energy research ; Energy technology ; Hydrogen ; Hydrogen evolution reactions ; Molybdenum ; Molybdenum oxides ; Nanospheres ; Renewable energy ; Renewable energy technologies ; Renewable resources ; Shell stability ; Shells ; Void space ; Water splitting ; Yolk</subject><ispartof>Sustainable energy & fuels, 2018, Vol.2 (2), p.444-454</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c259t-716185cbbf8a33c6925b474859678523429102b974cdbd77c74af7a76467e34e3</citedby><cites>FETCH-LOGICAL-c259t-716185cbbf8a33c6925b474859678523429102b974cdbd77c74af7a76467e34e3</cites><orcidid>0000-0003-1690-5720 ; 0000-0002-5221-5391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Xia, Xiaohong</creatorcontrib><creatorcontrib>Wang, Chunming</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Du, Yonglin</creatorcontrib><creatorcontrib>Ye, Weichun</creatorcontrib><title>Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution</title><title>Sustainable energy & fuels</title><description>Transition metal dichalcogenides for electrocatalytic water splitting are important in renewable energy research, with studies showing that the edge structure and specific surface area are crucial to their electrocatalytic activity. Herein, the design and construction of yolk–shell nanospheres based on molybdenum diselenide-encapsulated molybdenum oxide are reported. Their structures were characterized using various techniques, which showed that the void space between the interior core and outer shell increased the number of active sites. This yolk–shell structure exhibited enhanced and stable electrocatalytic activity in the hydrogen evolution reaction (HER). The HER current density at −0.5 V
vs.
the reversible hydrogen electrode was increased by 95% (to −256 mA cm
−2
) compared to that of traditional flower-like molybdenum diselenide. The overpotential of this yolk–shell structure, which was required to drive a current density of −10 mA cm
−2
, was 65 mV lower than that of flower-like molybdenum diselenide (286 mV). Furthermore, long-term potential cycling and potentiostatic measurement of this catalyst showed favorable stability and durability of electrocatalytic activity. This yolk–shell structure plays a key role in energy conversion processes central to several renewable energy technologies.</description><subject>Current density</subject><subject>Durability</subject><subject>Encapsulation</subject><subject>Energy</subject><subject>Energy conversion</subject><subject>Energy research</subject><subject>Energy technology</subject><subject>Hydrogen</subject><subject>Hydrogen evolution reactions</subject><subject>Molybdenum</subject><subject>Molybdenum oxides</subject><subject>Nanospheres</subject><subject>Renewable energy</subject><subject>Renewable energy technologies</subject><subject>Renewable resources</subject><subject>Shell stability</subject><subject>Shells</subject><subject>Void space</subject><subject>Water splitting</subject><subject>Yolk</subject><issn>2398-4902</issn><issn>2398-4902</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkM1KxDAUhYsoOIyz8QkC7oRqmqZJs5Rx_IEBF6PrkqY3TsdMUpNU7M5HEHxDn8TKCM7qHDjfuRdOkpxm-CLDubic89UCY8rY9UEyIbkoUyowOdzzx8kshA3GmGSEkoJPks_VYOMaQhuQ02hw5uX74yuswRgUujV4CKiWARrkLNo6M9QN2H6LmjaAAds2kIJVsgu9kXGk9hD3PqZIO49A61a1YCMaOyp6p2SUZoitQuuh8e4ZLII3Z_rYOnuSHGlpAsz-dJo83Swe53fp8uH2fn61TBUpREx5xrKyUHWtS5nniglS1JTTshCMlwXJKREZJrXgVDV1w7niVGouOaOMQ04hnyZnu7udd689hFhtXO_t-LIiOMOloASzkTrfUcq7EDzoqvPtVvqhynD1O3r1P3r-A0NZeB4</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Xia, Xiaohong</creator><creator>Wang, Chunming</creator><creator>Liu, Lang</creator><creator>Du, Yonglin</creator><creator>Ye, Weichun</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SP</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>L7M</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0003-1690-5720</orcidid><orcidid>https://orcid.org/0000-0002-5221-5391</orcidid></search><sort><creationdate>2018</creationdate><title>Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution</title><author>Xia, Xiaohong ; Wang, Chunming ; Liu, Lang ; Du, Yonglin ; Ye, Weichun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c259t-716185cbbf8a33c6925b474859678523429102b974cdbd77c74af7a76467e34e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Current density</topic><topic>Durability</topic><topic>Encapsulation</topic><topic>Energy</topic><topic>Energy conversion</topic><topic>Energy research</topic><topic>Energy technology</topic><topic>Hydrogen</topic><topic>Hydrogen evolution reactions</topic><topic>Molybdenum</topic><topic>Molybdenum oxides</topic><topic>Nanospheres</topic><topic>Renewable energy</topic><topic>Renewable energy technologies</topic><topic>Renewable resources</topic><topic>Shell stability</topic><topic>Shells</topic><topic>Void space</topic><topic>Water splitting</topic><topic>Yolk</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xia, Xiaohong</creatorcontrib><creatorcontrib>Wang, Chunming</creatorcontrib><creatorcontrib>Liu, Lang</creatorcontrib><creatorcontrib>Du, Yonglin</creatorcontrib><creatorcontrib>Ye, Weichun</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Sustainable energy & fuels</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xia, Xiaohong</au><au>Wang, Chunming</au><au>Liu, Lang</au><au>Du, Yonglin</au><au>Ye, Weichun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution</atitle><jtitle>Sustainable energy & fuels</jtitle><date>2018</date><risdate>2018</risdate><volume>2</volume><issue>2</issue><spage>444</spage><epage>454</epage><pages>444-454</pages><issn>2398-4902</issn><eissn>2398-4902</eissn><abstract>Transition metal dichalcogenides for electrocatalytic water splitting are important in renewable energy research, with studies showing that the edge structure and specific surface area are crucial to their electrocatalytic activity. Herein, the design and construction of yolk–shell nanospheres based on molybdenum diselenide-encapsulated molybdenum oxide are reported. Their structures were characterized using various techniques, which showed that the void space between the interior core and outer shell increased the number of active sites. This yolk–shell structure exhibited enhanced and stable electrocatalytic activity in the hydrogen evolution reaction (HER). The HER current density at −0.5 V
vs.
the reversible hydrogen electrode was increased by 95% (to −256 mA cm
−2
) compared to that of traditional flower-like molybdenum diselenide. The overpotential of this yolk–shell structure, which was required to drive a current density of −10 mA cm
−2
, was 65 mV lower than that of flower-like molybdenum diselenide (286 mV). Furthermore, long-term potential cycling and potentiostatic measurement of this catalyst showed favorable stability and durability of electrocatalytic activity. This yolk–shell structure plays a key role in energy conversion processes central to several renewable energy technologies.</abstract><cop>London</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/C7SE00466D</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1690-5720</orcidid><orcidid>https://orcid.org/0000-0002-5221-5391</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2398-4902 |
ispartof | Sustainable energy & fuels, 2018, Vol.2 (2), p.444-454 |
issn | 2398-4902 2398-4902 |
language | eng |
recordid | cdi_proquest_journals_2010894206 |
source | Royal Society Of Chemistry Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Current density Durability Encapsulation Energy Energy conversion Energy research Energy technology Hydrogen Hydrogen evolution reactions Molybdenum Molybdenum oxides Nanospheres Renewable energy Renewable energy technologies Renewable resources Shell stability Shells Void space Water splitting Yolk |
title | Synthesis of yolk–shell spheres based on molybdenum diselenide-encapsulated molybdenum oxide for efficient electrocatalytic hydrogen evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T17%3A16%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20yolk%E2%80%93shell%20spheres%20based%20on%20molybdenum%20diselenide-encapsulated%20molybdenum%20oxide%20for%20efficient%20electrocatalytic%20hydrogen%20evolution&rft.jtitle=Sustainable%20energy%20&%20fuels&rft.au=Xia,%20Xiaohong&rft.date=2018&rft.volume=2&rft.issue=2&rft.spage=444&rft.epage=454&rft.pages=444-454&rft.issn=2398-4902&rft.eissn=2398-4902&rft_id=info:doi/10.1039/C7SE00466D&rft_dat=%3Cproquest_cross%3E2010894206%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010894206&rft_id=info:pmid/&rfr_iscdi=true |