Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses
Differential scanning calorimetry (DSC) was used to investigate the thermal behavior and non-isothermal crystallization kinetics of the Fe 67 Nb 5 B 28 metallic glasses prepared by melt-spinning method. DSC traces exhibit that the crystallization takes place through a single exothermic reaction, and...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2018-04, Vol.132 (1), p.173-180 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 1 |
container_start_page | 173 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 132 |
creator | Zhu, Man Fa, Yang Jian, Zengyun Yao, Lijuan Jin, Changqing Nan, Ruihua Chang, Fang’e |
description | Differential scanning calorimetry (DSC) was used to investigate the thermal behavior and non-isothermal crystallization kinetics of the Fe
67
Nb
5
B
28
metallic glasses prepared by melt-spinning method. DSC traces exhibit that the crystallization takes place through a single exothermic reaction, and it processes a good thermal stability in thermodynamics. The activation energies for nucleation and grain growth processes were calculated to be 536 ± 22 and 559 ± 20 kJ mol
−1
by Kissinger equation, respectively, and 551 ± 24 and 574 ± 20 kJ mol
−1
by Ozawa equation, respectively. It means that the grain growth process is more difficult than the nucleation process. The variation of local Avrami exponent
n
(
x
) with crystallized fraction
x
demonstrates that the crystallization mechanism varies at different stages. The
n
(
x
) is larger than 2.5 at the initial stage of 0 |
doi_str_mv | 10.1007/s10973-017-6867-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2010886810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010886810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-74097caadae37f46deb2f7bf82a378bbf692a10f9133b0c027bd640465a19de03</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMQfOdmI7I1QUkKqywGw5iR1SkrjY7lB-PW6DxMR0p9N73909hK4J3BIAcRcIlIJlQETGJRcZPUEzUkiZ0ZLy09Sz1HNSwDm6CGEDAGUJZIbatRuzLrj4Yfyge1z7fYi677tvHTs34s9uNLGrA9Zjg4OzEQ-6PY7w1rut8bEzATuLEwAvDRfrqnigEg_mSKlx2-sQTLhEZ1b3wVz91jl6Xz6-LZ6z1evTy-J-ldWsYDETeXqj1rrRhgmb88ZU1IrKSqqZkFVleUk1AVsSxiqogYqq4TnkvNCkbAywObqZuOm6r50JUW3czo9ppaJAQEouyUFFJlXtXQjeWLX13aD9XhFQhzzVlKdKeapDnoomD508IWnH1vg_8v-mH7JKeR8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010886810</pqid></control><display><type>article</type><title>Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses</title><source>SpringerLink Journals - AutoHoldings</source><creator>Zhu, Man ; Fa, Yang ; Jian, Zengyun ; Yao, Lijuan ; Jin, Changqing ; Nan, Ruihua ; Chang, Fang’e</creator><creatorcontrib>Zhu, Man ; Fa, Yang ; Jian, Zengyun ; Yao, Lijuan ; Jin, Changqing ; Nan, Ruihua ; Chang, Fang’e</creatorcontrib><description><![CDATA[Differential scanning calorimetry (DSC) was used to investigate the thermal behavior and non-isothermal crystallization kinetics of the Fe
67
Nb
5
B
28
metallic glasses prepared by melt-spinning method. DSC traces exhibit that the crystallization takes place through a single exothermic reaction, and it processes a good thermal stability in thermodynamics. The activation energies for nucleation and grain growth processes were calculated to be 536 ± 22 and 559 ± 20 kJ mol
−1
by Kissinger equation, respectively, and 551 ± 24 and 574 ± 20 kJ mol
−1
by Ozawa equation, respectively. It means that the grain growth process is more difficult than the nucleation process. The variation of local Avrami exponent
n
(
x
) with crystallized fraction
x
demonstrates that the crystallization mechanism varies at different stages. The
n
(
x
) is larger than 2.5 at the initial stage of 0 <
x
< 0.3, implying a mechanism of diffusion-controlled three-dimensional growth with increasing nucleation rate. The
n
(
x
) decreases from 2.5 to 1.5 in the range of 0.3 <
x
< 0.65, suggesting that the crystallization belongs to three-dimensional nucleation and grain growth with decreasing nucleation rate. And
n
(
x
) lies between 1.0 and 1.5 in the range of 0.65 <
x
< 0.95, indicating that the crystallization corresponds to the growth of particles with an appreciable initial volume. Low-temperature annealing corresponds to the precipitation of α-Fe, Fe
2
B, and Fe
23
B
6
phases, and further annealing leads to the formation of α-Fe, Fe
2
B, and FeNbB phases. The magnetic properties in relation to microstructure change of the Fe
67
Nb
5
B
28
metallic glasses are discussed.]]></description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6867-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amorphous materials ; Analytical Chemistry ; Annealing ; Chemistry ; Chemistry and Materials Science ; Crystal growth ; Crystallization ; Differential scanning calorimetry ; Diffusion rate ; Exothermic reactions ; Grain growth ; Inorganic Chemistry ; Kinetics ; Magnetic properties ; Measurement Science and Instrumentation ; Melt spinning ; Metallic glasses ; Nucleation ; Physical Chemistry ; Polymer Sciences ; Reaction kinetics ; Thermal stability ; Thermodynamic properties</subject><ispartof>Journal of thermal analysis and calorimetry, 2018-04, Vol.132 (1), p.173-180</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-74097caadae37f46deb2f7bf82a378bbf692a10f9133b0c027bd640465a19de03</citedby><cites>FETCH-LOGICAL-c353t-74097caadae37f46deb2f7bf82a378bbf692a10f9133b0c027bd640465a19de03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-017-6867-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-017-6867-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhu, Man</creatorcontrib><creatorcontrib>Fa, Yang</creatorcontrib><creatorcontrib>Jian, Zengyun</creatorcontrib><creatorcontrib>Yao, Lijuan</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Nan, Ruihua</creatorcontrib><creatorcontrib>Chang, Fang’e</creatorcontrib><title>Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description><![CDATA[Differential scanning calorimetry (DSC) was used to investigate the thermal behavior and non-isothermal crystallization kinetics of the Fe
67
Nb
5
B
28
metallic glasses prepared by melt-spinning method. DSC traces exhibit that the crystallization takes place through a single exothermic reaction, and it processes a good thermal stability in thermodynamics. The activation energies for nucleation and grain growth processes were calculated to be 536 ± 22 and 559 ± 20 kJ mol
−1
by Kissinger equation, respectively, and 551 ± 24 and 574 ± 20 kJ mol
−1
by Ozawa equation, respectively. It means that the grain growth process is more difficult than the nucleation process. The variation of local Avrami exponent
n
(
x
) with crystallized fraction
x
demonstrates that the crystallization mechanism varies at different stages. The
n
(
x
) is larger than 2.5 at the initial stage of 0 <
x
< 0.3, implying a mechanism of diffusion-controlled three-dimensional growth with increasing nucleation rate. The
n
(
x
) decreases from 2.5 to 1.5 in the range of 0.3 <
x
< 0.65, suggesting that the crystallization belongs to three-dimensional nucleation and grain growth with decreasing nucleation rate. And
n
(
x
) lies between 1.0 and 1.5 in the range of 0.65 <
x
< 0.95, indicating that the crystallization corresponds to the growth of particles with an appreciable initial volume. Low-temperature annealing corresponds to the precipitation of α-Fe, Fe
2
B, and Fe
23
B
6
phases, and further annealing leads to the formation of α-Fe, Fe
2
B, and FeNbB phases. The magnetic properties in relation to microstructure change of the Fe
67
Nb
5
B
28
metallic glasses are discussed.]]></description><subject>Amorphous materials</subject><subject>Analytical Chemistry</subject><subject>Annealing</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Crystal growth</subject><subject>Crystallization</subject><subject>Differential scanning calorimetry</subject><subject>Diffusion rate</subject><subject>Exothermic reactions</subject><subject>Grain growth</subject><subject>Inorganic Chemistry</subject><subject>Kinetics</subject><subject>Magnetic properties</subject><subject>Measurement Science and Instrumentation</subject><subject>Melt spinning</subject><subject>Metallic glasses</subject><subject>Nucleation</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Reaction kinetics</subject><subject>Thermal stability</subject><subject>Thermodynamic properties</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMQfOdmI7I1QUkKqywGw5iR1SkrjY7lB-PW6DxMR0p9N73909hK4J3BIAcRcIlIJlQETGJRcZPUEzUkiZ0ZLy09Sz1HNSwDm6CGEDAGUJZIbatRuzLrj4Yfyge1z7fYi677tvHTs34s9uNLGrA9Zjg4OzEQ-6PY7w1rut8bEzATuLEwAvDRfrqnigEg_mSKlx2-sQTLhEZ1b3wVz91jl6Xz6-LZ6z1evTy-J-ldWsYDETeXqj1rrRhgmb88ZU1IrKSqqZkFVleUk1AVsSxiqogYqq4TnkvNCkbAywObqZuOm6r50JUW3czo9ppaJAQEouyUFFJlXtXQjeWLX13aD9XhFQhzzVlKdKeapDnoomD508IWnH1vg_8v-mH7JKeR8</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Zhu, Man</creator><creator>Fa, Yang</creator><creator>Jian, Zengyun</creator><creator>Yao, Lijuan</creator><creator>Jin, Changqing</creator><creator>Nan, Ruihua</creator><creator>Chang, Fang’e</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20180401</creationdate><title>Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses</title><author>Zhu, Man ; Fa, Yang ; Jian, Zengyun ; Yao, Lijuan ; Jin, Changqing ; Nan, Ruihua ; Chang, Fang’e</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-74097caadae37f46deb2f7bf82a378bbf692a10f9133b0c027bd640465a19de03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphous materials</topic><topic>Analytical Chemistry</topic><topic>Annealing</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Crystal growth</topic><topic>Crystallization</topic><topic>Differential scanning calorimetry</topic><topic>Diffusion rate</topic><topic>Exothermic reactions</topic><topic>Grain growth</topic><topic>Inorganic Chemistry</topic><topic>Kinetics</topic><topic>Magnetic properties</topic><topic>Measurement Science and Instrumentation</topic><topic>Melt spinning</topic><topic>Metallic glasses</topic><topic>Nucleation</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Reaction kinetics</topic><topic>Thermal stability</topic><topic>Thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Man</creatorcontrib><creatorcontrib>Fa, Yang</creatorcontrib><creatorcontrib>Jian, Zengyun</creatorcontrib><creatorcontrib>Yao, Lijuan</creatorcontrib><creatorcontrib>Jin, Changqing</creatorcontrib><creatorcontrib>Nan, Ruihua</creatorcontrib><creatorcontrib>Chang, Fang’e</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Man</au><au>Fa, Yang</au><au>Jian, Zengyun</au><au>Yao, Lijuan</au><au>Jin, Changqing</au><au>Nan, Ruihua</au><au>Chang, Fang’e</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2018-04-01</date><risdate>2018</risdate><volume>132</volume><issue>1</issue><spage>173</spage><epage>180</epage><pages>173-180</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract><![CDATA[Differential scanning calorimetry (DSC) was used to investigate the thermal behavior and non-isothermal crystallization kinetics of the Fe
67
Nb
5
B
28
metallic glasses prepared by melt-spinning method. DSC traces exhibit that the crystallization takes place through a single exothermic reaction, and it processes a good thermal stability in thermodynamics. The activation energies for nucleation and grain growth processes were calculated to be 536 ± 22 and 559 ± 20 kJ mol
−1
by Kissinger equation, respectively, and 551 ± 24 and 574 ± 20 kJ mol
−1
by Ozawa equation, respectively. It means that the grain growth process is more difficult than the nucleation process. The variation of local Avrami exponent
n
(
x
) with crystallized fraction
x
demonstrates that the crystallization mechanism varies at different stages. The
n
(
x
) is larger than 2.5 at the initial stage of 0 <
x
< 0.3, implying a mechanism of diffusion-controlled three-dimensional growth with increasing nucleation rate. The
n
(
x
) decreases from 2.5 to 1.5 in the range of 0.3 <
x
< 0.65, suggesting that the crystallization belongs to three-dimensional nucleation and grain growth with decreasing nucleation rate. And
n
(
x
) lies between 1.0 and 1.5 in the range of 0.65 <
x
< 0.95, indicating that the crystallization corresponds to the growth of particles with an appreciable initial volume. Low-temperature annealing corresponds to the precipitation of α-Fe, Fe
2
B, and Fe
23
B
6
phases, and further annealing leads to the formation of α-Fe, Fe
2
B, and FeNbB phases. The magnetic properties in relation to microstructure change of the Fe
67
Nb
5
B
28
metallic glasses are discussed.]]></abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-017-6867-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2018-04, Vol.132 (1), p.173-180 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2010886810 |
source | SpringerLink Journals - AutoHoldings |
subjects | Amorphous materials Analytical Chemistry Annealing Chemistry Chemistry and Materials Science Crystal growth Crystallization Differential scanning calorimetry Diffusion rate Exothermic reactions Grain growth Inorganic Chemistry Kinetics Magnetic properties Measurement Science and Instrumentation Melt spinning Metallic glasses Nucleation Physical Chemistry Polymer Sciences Reaction kinetics Thermal stability Thermodynamic properties |
title | Non-isothermal crystallization kinetics and soft magnetic properties of the Fe67Nb5B28 metallic glasses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T04%3A45%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-isothermal%20crystallization%20kinetics%20and%20soft%20magnetic%20properties%20of%20the%20Fe67Nb5B28%20metallic%20glasses&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Zhu,%20Man&rft.date=2018-04-01&rft.volume=132&rft.issue=1&rft.spage=173&rft.epage=180&rft.pages=173-180&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6867-2&rft_dat=%3Cproquest_cross%3E2010886810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010886810&rft_id=info:pmid/&rfr_iscdi=true |