Water and the relationship to the crystal structure stability of azithromycin

This study investigated the solid-state physical stabilities of azithromycin dihydrate (AZM-DH), thermally prepared anhydrate and hemihydrate modifications. Programmed thermal treatment of AZM-DH in DSC yielded the formation of anhydrate amorphs (I, II), crystalline AZM anhydrate and hemihydrate pha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of thermal analysis and calorimetry 2018-04, Vol.132 (1), p.373-384
Hauptverfasser: Neglur, R, Hosten, E, Aucamp, M, Liebenberg, W, Grooff, D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 384
container_issue 1
container_start_page 373
container_title Journal of thermal analysis and calorimetry
container_volume 132
creator Neglur, R
Hosten, E
Aucamp, M
Liebenberg, W
Grooff, D
description This study investigated the solid-state physical stabilities of azithromycin dihydrate (AZM-DH), thermally prepared anhydrate and hemihydrate modifications. Programmed thermal treatment of AZM-DH in DSC yielded the formation of anhydrate amorphs (I, II), crystalline AZM anhydrate and hemihydrate phases. The formation of the anhydrate amorphs, I and II, respectively, involved different transformation pathways of solid-liquid-solid (melting and supercooling) and solid-solid (378 K for 24 h.). Both amorph phases exhibit hygroscopic behaviour, producing non-stoichiometric hydrates, with extent of moisture absorption increasing with increased storage humidity (0-96% RH/313 K). TG analysis after controlled storage (4 days at 96% RH/313 K) detected absorbed waters of hydration up to 5.9 and 5.3% for amorphs I and II, respectively. The crystal anhydrate and hemihydrate phases were hygroscopic and readily converted to the stoichiometric dihydrate form, which was compositionally stable in RH ranges from 11 to 96% at 313 K. Solubility studies, performed in distilled water at 310 K, showed an at least 1.5 fold solubility improvement for both amorph forms relative to crystalline AZM-DH, but with some evidence of solvent-mediated phase transformation after 20 min. Structural characterization by single-crystal XRD concluded that thermally stimulated amorphization required energy to disrupt intermolecular hydrogen bond interactions by bridging water molecules in addition to hydrogen bond interactions between neighbouring AZM molecules in unit cell.
doi_str_mv 10.1007/s10973-017-6928-6
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2010886774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530007751</galeid><sourcerecordid>A530007751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c262t-9444ad43c0dfeb7070c0d5be6b329db7350598f185183d60857035744cd23663</originalsourceid><addsrcrecordid>eNptkE1LAzEQhoMoWKs_wNuCJw9bJ5vN17EUPwoVQQsel2w226ZsNzXJgvXXG1TQgsxhHobnnYFB6BLDBAPwm4BBcpID5jmThcjZERphKkReyIIdJyaJGaZwis5C2ACAlIBH6PFVReMz1TdZXJvMm05F6_qwtrssuq-Z9vsQVZeF6AcdB28Sqdp2Nu4z12bqw8a1d9u9tv05OmlVF8zFTx-j5d3tcvaQL57u57PpItcFK2Iuy7JUTUk0NK2pOXBIRGvDalLIpuaEApWixYJiQRoGgnIglJelbgrCGBmjq--1O-_eBhNitXGD79PFqgAMQjDOy19rpTpT2b510Su9tUFXU0rSBzinOFmTf6xUjdla7XrT2jQ_CFwfBJITzXtcqSGEav7y_Nf9BEQPeKY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010886774</pqid></control><display><type>article</type><title>Water and the relationship to the crystal structure stability of azithromycin</title><source>SpringerNature Journals</source><creator>Neglur, R ; Hosten, E ; Aucamp, M ; Liebenberg, W ; Grooff, D</creator><creatorcontrib>Neglur, R ; Hosten, E ; Aucamp, M ; Liebenberg, W ; Grooff, D</creatorcontrib><description>This study investigated the solid-state physical stabilities of azithromycin dihydrate (AZM-DH), thermally prepared anhydrate and hemihydrate modifications. Programmed thermal treatment of AZM-DH in DSC yielded the formation of anhydrate amorphs (I, II), crystalline AZM anhydrate and hemihydrate phases. The formation of the anhydrate amorphs, I and II, respectively, involved different transformation pathways of solid-liquid-solid (melting and supercooling) and solid-solid (378 K for 24 h.). Both amorph phases exhibit hygroscopic behaviour, producing non-stoichiometric hydrates, with extent of moisture absorption increasing with increased storage humidity (0-96% RH/313 K). TG analysis after controlled storage (4 days at 96% RH/313 K) detected absorbed waters of hydration up to 5.9 and 5.3% for amorphs I and II, respectively. The crystal anhydrate and hemihydrate phases were hygroscopic and readily converted to the stoichiometric dihydrate form, which was compositionally stable in RH ranges from 11 to 96% at 313 K. Solubility studies, performed in distilled water at 310 K, showed an at least 1.5 fold solubility improvement for both amorph forms relative to crystalline AZM-DH, but with some evidence of solvent-mediated phase transformation after 20 min. Structural characterization by single-crystal XRD concluded that thermally stimulated amorphization required energy to disrupt intermolecular hydrogen bond interactions by bridging water molecules in addition to hydrogen bond interactions between neighbouring AZM molecules in unit cell.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-017-6928-6</identifier><language>eng</language><publisher>Dordrecht: Springer</publisher><subject>Amorphization ; Analysis ; Azithromycin ; Crystal structure ; Crystallinity ; Distilled water ; Heat treatment ; Hydrates ; Hydrogen ; Hydrogen bonds ; Hydrogen storage ; Hydrogen-based energy ; Phase transitions ; Phases ; Single crystals ; Solubility ; Structural analysis ; Structural stability ; Supercooling ; Water chemistry</subject><ispartof>Journal of thermal analysis and calorimetry, 2018-04, Vol.132 (1), p.373-384</ispartof><rights>COPYRIGHT 2018 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c262t-9444ad43c0dfeb7070c0d5be6b329db7350598f185183d60857035744cd23663</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Neglur, R</creatorcontrib><creatorcontrib>Hosten, E</creatorcontrib><creatorcontrib>Aucamp, M</creatorcontrib><creatorcontrib>Liebenberg, W</creatorcontrib><creatorcontrib>Grooff, D</creatorcontrib><title>Water and the relationship to the crystal structure stability of azithromycin</title><title>Journal of thermal analysis and calorimetry</title><description>This study investigated the solid-state physical stabilities of azithromycin dihydrate (AZM-DH), thermally prepared anhydrate and hemihydrate modifications. Programmed thermal treatment of AZM-DH in DSC yielded the formation of anhydrate amorphs (I, II), crystalline AZM anhydrate and hemihydrate phases. The formation of the anhydrate amorphs, I and II, respectively, involved different transformation pathways of solid-liquid-solid (melting and supercooling) and solid-solid (378 K for 24 h.). Both amorph phases exhibit hygroscopic behaviour, producing non-stoichiometric hydrates, with extent of moisture absorption increasing with increased storage humidity (0-96% RH/313 K). TG analysis after controlled storage (4 days at 96% RH/313 K) detected absorbed waters of hydration up to 5.9 and 5.3% for amorphs I and II, respectively. The crystal anhydrate and hemihydrate phases were hygroscopic and readily converted to the stoichiometric dihydrate form, which was compositionally stable in RH ranges from 11 to 96% at 313 K. Solubility studies, performed in distilled water at 310 K, showed an at least 1.5 fold solubility improvement for both amorph forms relative to crystalline AZM-DH, but with some evidence of solvent-mediated phase transformation after 20 min. Structural characterization by single-crystal XRD concluded that thermally stimulated amorphization required energy to disrupt intermolecular hydrogen bond interactions by bridging water molecules in addition to hydrogen bond interactions between neighbouring AZM molecules in unit cell.</description><subject>Amorphization</subject><subject>Analysis</subject><subject>Azithromycin</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Distilled water</subject><subject>Heat treatment</subject><subject>Hydrates</subject><subject>Hydrogen</subject><subject>Hydrogen bonds</subject><subject>Hydrogen storage</subject><subject>Hydrogen-based energy</subject><subject>Phase transitions</subject><subject>Phases</subject><subject>Single crystals</subject><subject>Solubility</subject><subject>Structural analysis</subject><subject>Structural stability</subject><subject>Supercooling</subject><subject>Water chemistry</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNptkE1LAzEQhoMoWKs_wNuCJw9bJ5vN17EUPwoVQQsel2w226ZsNzXJgvXXG1TQgsxhHobnnYFB6BLDBAPwm4BBcpID5jmThcjZERphKkReyIIdJyaJGaZwis5C2ACAlIBH6PFVReMz1TdZXJvMm05F6_qwtrssuq-Z9vsQVZeF6AcdB28Sqdp2Nu4z12bqw8a1d9u9tv05OmlVF8zFTx-j5d3tcvaQL57u57PpItcFK2Iuy7JUTUk0NK2pOXBIRGvDalLIpuaEApWixYJiQRoGgnIglJelbgrCGBmjq--1O-_eBhNitXGD79PFqgAMQjDOy19rpTpT2b510Su9tUFXU0rSBzinOFmTf6xUjdla7XrT2jQ_CFwfBJITzXtcqSGEav7y_Nf9BEQPeKY</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Neglur, R</creator><creator>Hosten, E</creator><creator>Aucamp, M</creator><creator>Liebenberg, W</creator><creator>Grooff, D</creator><general>Springer</general><general>Springer Nature B.V</general><scope>ISR</scope></search><sort><creationdate>20180401</creationdate><title>Water and the relationship to the crystal structure stability of azithromycin</title><author>Neglur, R ; Hosten, E ; Aucamp, M ; Liebenberg, W ; Grooff, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c262t-9444ad43c0dfeb7070c0d5be6b329db7350598f185183d60857035744cd23663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amorphization</topic><topic>Analysis</topic><topic>Azithromycin</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Distilled water</topic><topic>Heat treatment</topic><topic>Hydrates</topic><topic>Hydrogen</topic><topic>Hydrogen bonds</topic><topic>Hydrogen storage</topic><topic>Hydrogen-based energy</topic><topic>Phase transitions</topic><topic>Phases</topic><topic>Single crystals</topic><topic>Solubility</topic><topic>Structural analysis</topic><topic>Structural stability</topic><topic>Supercooling</topic><topic>Water chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neglur, R</creatorcontrib><creatorcontrib>Hosten, E</creatorcontrib><creatorcontrib>Aucamp, M</creatorcontrib><creatorcontrib>Liebenberg, W</creatorcontrib><creatorcontrib>Grooff, D</creatorcontrib><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neglur, R</au><au>Hosten, E</au><au>Aucamp, M</au><au>Liebenberg, W</au><au>Grooff, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water and the relationship to the crystal structure stability of azithromycin</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>132</volume><issue>1</issue><spage>373</spage><epage>384</epage><pages>373-384</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>This study investigated the solid-state physical stabilities of azithromycin dihydrate (AZM-DH), thermally prepared anhydrate and hemihydrate modifications. Programmed thermal treatment of AZM-DH in DSC yielded the formation of anhydrate amorphs (I, II), crystalline AZM anhydrate and hemihydrate phases. The formation of the anhydrate amorphs, I and II, respectively, involved different transformation pathways of solid-liquid-solid (melting and supercooling) and solid-solid (378 K for 24 h.). Both amorph phases exhibit hygroscopic behaviour, producing non-stoichiometric hydrates, with extent of moisture absorption increasing with increased storage humidity (0-96% RH/313 K). TG analysis after controlled storage (4 days at 96% RH/313 K) detected absorbed waters of hydration up to 5.9 and 5.3% for amorphs I and II, respectively. The crystal anhydrate and hemihydrate phases were hygroscopic and readily converted to the stoichiometric dihydrate form, which was compositionally stable in RH ranges from 11 to 96% at 313 K. Solubility studies, performed in distilled water at 310 K, showed an at least 1.5 fold solubility improvement for both amorph forms relative to crystalline AZM-DH, but with some evidence of solvent-mediated phase transformation after 20 min. Structural characterization by single-crystal XRD concluded that thermally stimulated amorphization required energy to disrupt intermolecular hydrogen bond interactions by bridging water molecules in addition to hydrogen bond interactions between neighbouring AZM molecules in unit cell.</abstract><cop>Dordrecht</cop><pub>Springer</pub><doi>10.1007/s10973-017-6928-6</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2018-04, Vol.132 (1), p.373-384
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2010886774
source SpringerNature Journals
subjects Amorphization
Analysis
Azithromycin
Crystal structure
Crystallinity
Distilled water
Heat treatment
Hydrates
Hydrogen
Hydrogen bonds
Hydrogen storage
Hydrogen-based energy
Phase transitions
Phases
Single crystals
Solubility
Structural analysis
Structural stability
Supercooling
Water chemistry
title Water and the relationship to the crystal structure stability of azithromycin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A05%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water%20and%20the%20relationship%20to%20the%20crystal%20structure%20stability%20of%20azithromycin&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Neglur,%20R&rft.date=2018-04-01&rft.volume=132&rft.issue=1&rft.spage=373&rft.epage=384&rft.pages=373-384&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-017-6928-6&rft_dat=%3Cgale_proqu%3EA530007751%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010886774&rft_id=info:pmid/&rft_galeid=A530007751&rfr_iscdi=true